分析:①利用偶函數(shù)的概念與性質(zhì)可判斷①;
②令g(x)=
=|x|+
=
,利用復(fù)合函數(shù)的單調(diào)性可判斷②;
③利用y=|x|+
≥2(當(dāng)且僅當(dāng)|x|=1,即x=±1時(shí)取“=”)及復(fù)合函數(shù)的性質(zhì)可判斷,當(dāng)0<a<1時(shí),函數(shù)的最值,可判斷③;
④利用②③的結(jié)論可判斷④.
解答:
解:①,∵f(x)的定義域?yàn)閧x|x≠0},且f(-x)=
a=
a=f(x),
∴f(x)為偶函數(shù),其圖象關(guān)于y軸對稱,即函數(shù)圖象關(guān)于軸對稱,故①正確;
②,令g(x)=
=|x|+
=
,
當(dāng)x>1時(shí),g′(x)=1-
>0,y=g(x)在(1,+∞)上為增函數(shù);
當(dāng)a>1時(shí),函數(shù)y=a
x在(1,+∞)上為增函數(shù),由復(fù)合函數(shù)的單調(diào)性質(zhì)可得,當(dāng)a>1時(shí),函數(shù)y=f(x)在(1,+∞)上為增函數(shù),故②正確;
③,由于y=|x|+
≥2(當(dāng)且僅當(dāng)|x|=1,即x=±1時(shí)取“=”),
當(dāng)0<a<1時(shí),函數(shù)y=a
x在(0,1),(-∞,-1)單調(diào)遞減;在(1,+∞),(-1,0)上單調(diào)遞增,
∴0<a<1,x=±1時(shí)函數(shù)有最大值,且最大值為a
2,故③正確;
④,當(dāng)a>1時(shí),函數(shù)的值域?yàn)椋╝
2,+∞);當(dāng)0<a<1時(shí),函數(shù)的值域?yàn)椋?,a
2],故④錯(cuò)誤.
綜上所述,正確命題的序號是①②③,
故答案為:①②③.