14.已知函數(shù)f(x)=ex(x2+ax+a).
(I)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若關(guān)于x的不等式f(x)≤ea在[a,+∞)上有解,求實(shí)數(shù)a的取值范圍.

分析 (I)當(dāng)a=1時(shí),f(x)=ex(x2+x+1),求出其導(dǎo)數(shù),利用導(dǎo)數(shù)即可解出單調(diào)區(qū)間;
(Ⅱ)若關(guān)于x的不等式f(x)≤ea在[a,+∞)上有解,即x2+ax+a≤ea-x,在[a,+∞)上有解,構(gòu)造兩個(gè)函數(shù)r(x)=x2+ax+a,t(x)=ea-x,研究?jī)蓚(gè)函數(shù)的在[a,+∞)上的單調(diào)性,即可轉(zhuǎn)化出關(guān)于a的不等式,從而求得共范圍.

解答 解:(I)當(dāng)a=1時(shí),f(x)=ex(x2+x+1),則f′(x)=ex(x2+3x+2),
令f′(x)>0得x>-1或x<-2;令f′(x)<0得-2<x<-1
∴函數(shù)f(x)的單調(diào)增區(qū)間(-∞,-2)與(-1,+∞),單調(diào)遞減區(qū)間是(-2,-1)
(Ⅱ)f(x)≤ea,即ex(x2+ax+a)≤ea,可變?yōu)閤2+ax+a≤ea-x,
令r(x)=x2+ax+a,t(x)=ea-x,
當(dāng)a>0時(shí),在[a,+∞)上,由于r(x)的對(duì)稱軸為負(fù),故r(x)在[a,+∞)上增,t(x)在[a,+∞)上減,
欲使x2+ax+a≤ea-x有解,則只須r(a)≤t(a),即2a2+a≤1,解得-1≤a≤$\frac{1}{2}$,故0<a≤$\frac{1}{2}$.
當(dāng)a≤0時(shí),在[a,+∞)上,由于r(x)的對(duì)稱軸為正,故r(x)在[a,+∞)上先減后增,t(x)在[a,+∞)上減,
欲使x2+ax+a≤ea-x有解,只須r(-$\frac{a}{2}$)≤t(-$\frac{a}{2}$),即-$\frac{{a}^{2}}{4}$+a≤e${\;}^{\frac{3}{2}a}$,當(dāng)a≤0時(shí),-$\frac{{a}^{2}}{4}$+a≤e${\;}^{\frac{3}{2}a}$顯然成立
綜上知,a≤$\frac{1}{2}$即為符合條件的實(shí)數(shù)a的取值范圍.

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的綜合運(yùn)用,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,以及存在性問(wèn)題求參數(shù)的范圍,本題考查了轉(zhuǎn)化的思想,數(shù)形結(jié)合的思想,屬于導(dǎo)數(shù)運(yùn)用的一類典型題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.復(fù)數(shù)z=$\frac{2}{1-i}$,則復(fù)數(shù)z的模是$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.排列$A_3^2$=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.某校有1700名高一學(xué)生,1400名高二學(xué)生,1100名高三學(xué)生,高一數(shù)學(xué)興趣小組欲采用分層抽樣的方法在全校抽取42名學(xué)生進(jìn)行某項(xiàng)調(diào)查,則下列說(shuō)法正確的是( 。
A.高一學(xué)生被抽到的概率最大B.高三學(xué)生被抽到的概率最大
C.高三學(xué)生被抽到的概率最小D.每位學(xué)生被抽到的概率相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.奇函數(shù)f(x)(x∈R)滿足f(-3)=0,且在區(qū)間[0,2]于[2,+∞)上分別是遞減和遞增,則不等式(1-x2)f(x)>0的解集(-∞,-3)∪(-1,0)∪(1,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知隨機(jī)變量X~N(μ,σ2),且期概率密度函數(shù)在(-∞,80)上是增函數(shù),在(80,+∞)上為減函數(shù),且P(72<X<88)=0.683,求:
(1)參數(shù)μ,σ的值;
(2)P(64<X≤72)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知銳角α,β,γ滿足sinα+sinγ=sinβ,cosα-cosγ=cosβ,求α-β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知|$\overrightarrow{AB}$|=6,|$\overrightarrow{CD}$|=9,則|$\overrightarrow{AB}$+$\overrightarrow{CD}$|的取值范圍是[3,15].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}x-y+3≥0\\ 1≤x≤3\\ y≥1\end{array}\right.$,則z=x+y的最大值是9.

查看答案和解析>>

同步練習(xí)冊(cè)答案