4.設(shè)點(diǎn)P(x,y)滿足條件$\left\{\begin{array}{l}{x≤0}\\{y≥0}\\{y≤2x+2}\end{array}\right.$,點(diǎn)Q(a,b)滿足ax+by≤1恒成立,其中O是原點(diǎn),a≤0,b≥0,則Q點(diǎn)的軌跡所圍成的圖形的面積為( 。
A.$\frac{1}{2}$B.1C.2D.4

分析 由已知中在平面直角坐標(biāo)系中,點(diǎn)P(x,y)滿足條件$\left\{\begin{array}{l}{x≤0}\\{y≥0}\\{y≤2x+2}\end{array}\right.$,則滿足ax+by≤1恒成立得到ax+by的最大值為2,所以Q的坐標(biāo)滿足$\left\{\begin{array}{l}{a≤0}\\{2b≤1}\\{a≤0,b≥0}\end{array}\right.$,畫出滿足條件的圖形,即可得到點(diǎn)Q的軌跡圍成的圖形的面積.

解答 解:由ax+by≤1,
∵作出點(diǎn)P(x,y)滿足條件$\left\{\begin{array}{l}{x≤0}\\{y≥0}\\{y≤2x+2}\end{array}\right.$的區(qū)域,如圖,
ax+by≤1恒成立,因?yàn)閍≤0,b≥0,所以只須點(diǎn)P(x,y)在可行域內(nèi)的角點(diǎn)處:B(0,2),ax+by≤1成立即可,
∴點(diǎn)Q的坐標(biāo)滿足$\left\{\begin{array}{l}{a≤0}\\{2b≤1}\\{a≤0,b≥0}\end{array}\right.$,
它表示一個(gè)長為1寬為$\frac{1}{2}$的矩形,其面積為:$\frac{1}{2}$;
故選:A.

點(diǎn)評 本題主要考查了簡單的線性規(guī)劃,以及利用幾何意義求最值,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知方程x2+ax+2b=0(a∈R,b∈R),其一根在區(qū)間(0,1)內(nèi),另一根在區(qū)間(1,2)內(nèi),則$\frac{b-3}{a-1}$的取值范圍為$(\frac{1}{2},\frac{3}{2})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知a>b,則下面結(jié)論正確的是( 。
A.$\frac{1}{a}<\frac{1}$B.$\frac{a}>1$C.|a|>bD.ac2>bc2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知f(x)是定義在實(shí)數(shù)集R上的可導(dǎo)函數(shù),且其導(dǎo)函數(shù)為f′(x),若f′(x)<f(x)在R上恒成立,則不等式ef(x)>f(1)ex上的解集為(  )
A.(1,+∞)B.(-∞,1)C.(-1,1)D.(-∞,1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若sin(π+α)+sin(-α)=-m,則sin(3π+α)+2sin(2π-α)等于( 。
A.-$\frac{2}{3}$mB.-$\frac{3}{2}$mC.$\frac{2}{3}$mD.$\frac{3}{2}$m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知$f(x+\frac{1}{x})={x^2}+\frac{1}{x^2}$,則函數(shù)f(x)=( 。
A.x2-2(x≠0)B.x2-2(x≥2)C.x2-2(|x|≥2)D.x2-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=x3+ax+8的單調(diào)遞減區(qū)間為(-5,5),求函數(shù)f(x)的遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知{an}是遞增的等差數(shù)列,a1=2,且a1,a2,a4成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=2an+an,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=lg(x+$\frac{a}{x}$)(a∈R).
(1)求f(x)的定義域;
(2)若a<0,集合A={y|y=f(x),$\frac{1}{2}$≤x≤2},B=[-1,1],且A⊆B,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案