【題目】長為的線段的兩個端點和分別在軸和軸上滑動.
(1)求線段的中點的軌跡的方程;
(2)當(dāng)時,曲線與軸交于兩點,點在線段上,過作軸的垂線交曲線于不同的兩點,點在線段上,滿足與的斜率之積為-2,試求與的面積之比.
【答案】(1)(2).
【解析】試題分析:(1)設(shè)線段的中點為,根據(jù)平面上兩點間的距離公式,即可求解線段的中點的軌跡的方程;
(2)當(dāng)時,直線和直線的方程,聯(lián)立方程組,求得點的坐標(biāo),即可得打結(jié)果.
試題解析:
設(shè)線段的中點為,則, ,
故,
化簡得,此即線段的中點的軌跡的方程;
【法二:當(dāng)、重合或、重合時, 中點到原點距離為;
當(dāng)、、不共線時,根據(jù)直角三角形斜邊中線等于斜邊的一半,知中點到原點距離也恒為,
故線段的中點的軌跡的方程為】
(2)當(dāng)時,曲線的方程為,它與軸的交點為、,
設(shè), , ,
直線的斜率,故直線的斜率,
直線的方程是,
而直線的方程是,即
聯(lián)立,解得,此即點的坐標(biāo),
故.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中平面,且,
.
(1)求證:;
(2)在線段上,是否存在一點,使得二面角的大小為45°,如果存在,求與平面所成角的正弦值,如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示, 是某海灣旅游區(qū)的一角,為營造更加優(yōu)美的旅游環(huán)境,旅游區(qū)管委會決定建立面積為平分千米的三角形主題游戲樂園,并在區(qū)域建立水上餐廳.
已知, .
(1)設(shè), ,用表示,并求的最小值;
(2)設(shè)(為銳角),當(dāng)最小時,用表示區(qū)域的面積,并求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).
(1)當(dāng)時,討論函數(shù)的單調(diào)性;
(2)當(dāng)時,求證:對任意的.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動圓與圓:,圓都相內(nèi)切,即圓心的軌跡為曲線;設(shè)為曲線上的一個不在軸上的動點,為坐標(biāo)原點,過點作的平行線交曲線于,兩個不同的點.
(1)求曲線的方程;
(2)試探究和的比值能否為一個常數(shù)?若能,求出這個常數(shù);若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】交強險是車主必須為機動車購買的險種,若普通座以下私家車投保交強險第一年的費用(基準(zhǔn)保費)統(tǒng)一為元,在下一年續(xù)保時,實行的是費率浮動機制,保費與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費率也就越高,具體浮動情況如下表:
某機構(gòu)為了研究某一品牌普通座以下私家車的投保情況,隨機抽取了輛車齡已滿三年的該品牌同型號私家車的下一年續(xù)保時的情況,統(tǒng)計得到了下面的表格:
類型 | ||||||
數(shù)量 | 10 | 5 | 5 | 20 | 15 | 5 |
以這輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:
(Ⅰ)按照我國《機動車交通事故責(zé)任強制保險條例》汽車交強險價格的規(guī)定, ,記為某同學(xué)家里的一輛該品牌車在第四年續(xù)保時的費用,求的分布列與數(shù)學(xué)期望;(數(shù)學(xué)期望值保留到個位數(shù)字)
(Ⅱ)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車,假設(shè)購進一輛事故車虧損元,一輛非事故車盈利元:
①若該銷售商購進三輛(車齡已滿三年)該品牌二手車,求這三輛車中至少有一輛事故車的概率;
②若該銷售商一次購進輛(車齡已滿三年)該品牌二手車,求他獲得利潤的期望值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】重慶市乘坐出租車的收費辦法如下:
⑴不超過3千米的里程收費10元; ⑵超過3千米的里程按每千米2元收費(對于其中不足千米的部分,若其小于0.5千米則不收費,若其大于或等于0.5千米則按1千米收費); 當(dāng)車程超過3千米時,另收燃油附加費1元. |
相應(yīng)系統(tǒng)收費的程序框圖如圖所示,其中(單位:千米)為行駛里程,(單位:元)為所收費用,用表示不大于的最大整數(shù),則圖中①處應(yīng)填( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)若曲線與有三個不同的交點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1) 時,求函數(shù)的單調(diào)區(qū)間
討論函數(shù)在定義域內(nèi)的極值點的個數(shù);
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com