等差數(shù)列{an}的前n項(xiàng)和為Sn,若S17為一確定常數(shù),則當(dāng)n是
 
時可以使4a2-3a9+an也為確定常數(shù).
考點(diǎn):等差數(shù)列的前n項(xiàng)和
專題:等差數(shù)列與等比數(shù)列
分析:由已知得a1+8d為確定常數(shù),4a2-3a9+an也為確定常數(shù),從而4a2-3a9+an=2a1-(21+n)d=2(a1+8d),由此能求出n的值.
解答: 解:∵S17=
17
2
(a1+a17)
=17a9=17(a1+8d)為一確定常數(shù),
∴a1+8d為確定常數(shù),
∵4a2-3a9+an也為確定常數(shù),
∴4a2-3a9+an=(4a1+4d)-(3a1+24d)+[a1+(n-1)d]
=2a1-(21+n)d=2(a1+8d),
解得n=37.
故答案為:37.
點(diǎn)評:本題考查常數(shù)n的值的求法,解題時要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列共有10項(xiàng),其奇數(shù)項(xiàng)的和為15,偶數(shù)項(xiàng)的和為30,則該公比為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用二分法求圖象連續(xù)不斷的函數(shù)f(x)在區(qū)間(1,5)上的近似解,驗(yàn)證f(1)•f(5)<0,給定精確度ε=0.01,取區(qū)間(1,5)的中點(diǎn)x1=
1+5
2
=3,計算得f(1)•f(x1)<0,f(x1)•f(5)>0,則此時零點(diǎn)x0
 
.(填區(qū)間)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文科)若方程
x2
5-m
+
y2
m+3
=1是橢圓”,則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在不等邊三角形ABC中,角A,B,C的對邊分別是a,b,c,其中a為最大邊,如果sin2(B+C)<sin2B+sin2C,則角A的范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線(m-1)x+y+2m+1=0過定點(diǎn)
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在R上的奇函數(shù),當(dāng)x<0時,f(x)=(
1
3
x,則f(2)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x-1)2+(y-2)2=25,直線l:(2m+1)x+(m+1)y-7m-4=0(m∈R).求直線被圓C截得的弦長最小時l的方程.( 。
A、x-2y-1=0
B、2x-y-5=0
C、2x+y-7=0
D、x+2y-5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知球O的表面積為12π,一個正方體的各頂點(diǎn)都在該球面上,則這個正方體的體積為( 。
A、3
3
B、6
6
C、8
D、24

查看答案和解析>>

同步練習(xí)冊答案