15.對(duì)任意的n∈N*,數(shù)列{an}滿足|an-cos2n|≤$\frac{1}{3}$且|an+sin2n|≤$\frac{2}{3}$,則an等于( 。
A.$\frac{2}{3}$-sin2nB.sin2n-$\frac{2}{3}$C.$\frac{1}{3}$-cos2nD.cos2n+$\frac{1}{3}$

分析 |an-cos2n|≤$\frac{1}{3}$且|an+sin2n|≤$\frac{2}{3}$,可得cos2n-$\frac{1}{3}$≤an≤cos2n+$\frac{1}{3}$,-sin2n-$\frac{2}{3}$≤an≤-sin2n+$\frac{2}{3}$,即cos2n-$\frac{5}{3}$≤an≤cos2n-$\frac{1}{3}$,即可得出.

解答 解:∵|an-cos2n|≤$\frac{1}{3}$且|an+sin2n|≤$\frac{2}{3}$,
∴cos2n-$\frac{1}{3}$≤an≤cos2n+$\frac{1}{3}$,-sin2n-$\frac{2}{3}$≤an≤-sin2n+$\frac{2}{3}$,即cos2n-$\frac{5}{3}$≤an≤cos2n-$\frac{1}{3}$,
∴an=cos2n-$\frac{1}{3}$=$\frac{2}{3}$-sin2n.
故選:A.

點(diǎn)評(píng) 本題考查了絕對(duì)值不等式的性質(zhì)、同角三角函數(shù)基本關(guān)系式、數(shù)列通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.橢圓M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,P為橢圓M上任一點(diǎn),且|PF1|•|PF2|的最大值的取值范圍是[2b2,3b2],橢圓M的離心率為e,則e-$\frac{1}{e}$的最小值是( 。
A.-$\frac{\sqrt{2}}{2}$B.-$\sqrt{2}$C.-$\frac{\sqrt{6}}{6}$D.-$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.執(zhí)行如圖所示的框圖,若輸出的sum的值為2047,則條件框中應(yīng)填寫(xiě)的是( 。
A.i<9?B.i<10?C.i<11?D.i<12?
2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知a>0,函數(shù)$f(x)=a{x^3}+\frac{12}{a}lnx$,則f'(1)的最小值是12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.某科考試題中有甲、乙兩道不同類(lèi)型的選做題,且每道題滿分為10分,每位考生需從中任選一題作答.
(1)A同學(xué)將自己在該考試中歷次的選題及得分情況統(tǒng)計(jì)如下:
選甲題8次,得分分別為:6,10,10,6,6,10,6,10
選乙題10次,得分分別為:5,10,9,8,9,8,10,8,5,8
某次考試中,A同學(xué)的剩余時(shí)間僅夠閱讀并解答出甲、乙兩題中的某一道題,他應(yīng)該選擇甲題還是乙題?
(2)某次考試中,某班40名同學(xué)中選擇甲、乙兩題的人數(shù)相等,在16名該選做題獲得滿分的同學(xué)中有10人選的是甲題,則在犯錯(cuò)誤概率不超過(guò)1%的情況下,判斷該選做題得滿分是否與選題有關(guān)?
參考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
參考數(shù)據(jù):
P(K2≥k00.10.010.001
k02.7066.63510.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若圓x2+y2-2x-4ay+1=0截直線l:x-y-1=0所得弦長(zhǎng)為2$\sqrt{2}$,則圓的面積為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知圓P過(guò)A(-8,0),B(2,0),C(0,4)三點(diǎn),圓Q:x2+y2-2ay+a2-4=0.
(1)求圓P的方程;
(2)如果圓P和圓Q相外切,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.若拋物線y2=2px上一點(diǎn)P(2,y0)到其準(zhǔn)線的距離為4,則拋物線的標(biāo)準(zhǔn)方程為( 。
A.y2=4xB.y2=6xC.y2=8xD.y2=10x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知某智能手機(jī)制作完成之后還需要依次通過(guò)三道嚴(yán)格的審核程序,已知第一道審核、第二道審核、第三道審核通過(guò)的概率分別為$\frac{6}{7}$,$\frac{5}{6}$,$\frac{14}{15}$,每道程序是相互獨(dú)立的,且一旦審核不通過(guò)就停止審核,每部手機(jī)只有三道程序都通過(guò)才能出廠銷(xiāo)售.
(1)求審核過(guò)程中只進(jìn)行兩道程序就停止審核的概率;
(2)現(xiàn)有3部該智能手機(jī)進(jìn)入審核,記這3部手機(jī)可以出廠銷(xiāo)售的部數(shù)為X,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案