分析 (1)用五點(diǎn)法做函數(shù)y=Asin(ωx+φ)在一個(gè)周期上的簡(jiǎn)圖.
(2)利用y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的圖象的對(duì)稱性,求得θ的最小正值.
(3)利用正弦函數(shù)的定義域和值域,結(jié)合函數(shù)f(x)的圖象,求得m的取值范圍.
解答 解:(1)根據(jù)函數(shù)f(x)=2sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分圖象,可得$\frac{3}{4}$•$\frac{2π}{ω}$=$\frac{5π}{12}-(-\frac{π}{3})$,
求得ω=2.
再根據(jù)五點(diǎn)法作圖可得2•$\frac{5π}{12}$+φ=$\frac{π}{2}$,求得φ=-$\frac{π}{3}$,∴f(x)=2sin(2x-$\frac{π}{3}$).
(2)將y=f(x)的圖象向左平移θ(θ>0)個(gè)單位長(zhǎng)度,得到y(tǒng)=g(x)=2sin[2(x+θ)-$\frac{π}{3}$]=2sin(2x+2θ-$\frac{π}{3}$)的圖象,
∵y=g(x)圖象的一個(gè)對(duì)稱點(diǎn)為($\frac{π}{3}$,0),∴2•$\frac{π}{3}$+2θ-$\frac{π}{3}$=kπ,k∈Z,∴θ=$\frac{kπ}{2}$-$\frac{π}{6}$,故θ的最小正值為$\frac{π}{3}$.
(3)對(duì)任意的x∈[$\frac{π}{4}$,$\frac{5π}{6}$]時(shí),2x-$\frac{π}{3}$∈[$\frac{π}{6}$,$\frac{4π}{3}$],sin(2x-$\frac{π}{3}$)∈[-$\frac{\sqrt{3}}{2}$,1],即f(x)∈[-$\sqrt{3}$,2],
∵方程f(x)=m有兩個(gè)不等根,結(jié)合函數(shù)f(x),x∈[$\frac{π}{4}$,$\frac{5π}{6}$]時(shí)的圖象可得,1≤m<2.
點(diǎn)評(píng) 本題主要考查用五點(diǎn)法做函數(shù)y=Asin(ωx+φ)在一個(gè)周期上的簡(jiǎn)圖,y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的定義域和值域,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $2\sqrt{2}$ | B. | 4 | C. | $±2\sqrt{2}$ | D. | ±4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com