分析 設(shè)圓錐的底面半徑為r,高為h,體積為V,求出r2+h2=R2,表示出體積表達式,利用導(dǎo)數(shù)求出函數(shù)的最大值,得到結(jié)果.
解答 解:設(shè)圓錐的底面半徑為r,高為h,體積為V,那么r2+h2=R2,
因此,V=$\frac{1}{3}$πr2h=$\frac{1}{3}$π(R2-h2)h=$\frac{1}{3}$πR2h-$\frac{1}{3}$πh3(0<h<R).
V′=$\frac{1}{3}$πR2-πh2.
令V'=0,即$\frac{1}{3}$πR2-πh2=0,得 h=$\frac{\sqrt{3}}{3}$R.…(5分)
當 0<h<$\frac{\sqrt{3}}{3}$R時,V'>0.
當$\frac{\sqrt{3}}{3}$R<h<R時,V'<0.
所以,h=$\frac{\sqrt{3}}{3}$R時,V取得極大值,并且這個極大值是最大值.
把 h=$\frac{\sqrt{3}}{3}$R代入r2+h2=R2,得 r=$\frac{\sqrt{6}}{3}$R.
由Rα=2πr,得α=$\frac{2\sqrt{6}}{3}$π.
故答案為:$\frac{2\sqrt{6}}{3}$π.
點評 本題考查圓錐與扇形展開圖的關(guān)系,體積的計算,考查計算能力,導(dǎo)數(shù)的應(yīng)用,解題的關(guān)鍵是建立起體積的函數(shù)模型,理解函數(shù)的單調(diào)性與最值的關(guān)系是解本題的重點.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 區(qū)間[-2,0]上是減函數(shù) | B. | 區(qū)間[0,2]上是減函數(shù) | ||
C. | 區(qū)間[-1,0]上是增函數(shù) | D. | 區(qū)間[0,1]上是增函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com