17.已知直線l:mx-y+1-m=0與圓C:x2+(y-1)2=5相交于A、B兩點(diǎn),則弦AB的中點(diǎn)M的軌跡方程為$(x-\frac{1}{2})^{2}+(y-1)^{2}=\frac{1}{4}$.

分析 求出直線所過定點(diǎn),設(shè)出A,B,M的坐標(biāo),臨沂點(diǎn)差法結(jié)合斜率相等列式得答案.

解答 解:由直線l:mx-y+1-m=0,知直線過定點(diǎn)P(1,1),
設(shè)A(x1,y1),B(x2,y2),弦AB的中點(diǎn)M(x,y),
則${{x}_{1}}^{2}+({y}_{1}-1)^{2}=5$,${{x}_{2}}^{2}+({y}_{2}-1)^{2}=5$,
兩式作差得:$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}=-\frac{{x}_{1}+{x}_{2}}{{y}_{1}+{y}_{2}-2}$,
即${k}_{AB}=-\frac{2x}{2y-2}$=$-\frac{x}{y-1}$,
又${k}_{AB}={k}_{PM}=\frac{y-1}{x-1}$,
∴$\frac{y-1}{x-1}=-\frac{x}{y-1}$,整理得:$(x-\frac{1}{2})^{2}+(y-1)^{2}=\frac{1}{4}$.
故答案為:$(x-\frac{1}{2})^{2}+(y-1)^{2}=\frac{1}{4}$.

點(diǎn)評(píng) 本題考查軌跡方程的求法,訓(xùn)練了“點(diǎn)差法”求與中點(diǎn)弦有關(guān)的問題,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知二次函數(shù)f(x)=ax2+bx+c(a≠0)滿足f(-1+x)=f(-1-x),且f(0)=-3,f(1)=0.
(1)求函數(shù)f(x)的解析式;
(2)若函數(shù)g(x)=f(log2x)+mlog2x+m2在區(qū)間[$\frac{1}{4}$,4]上的最大值為20,求實(shí)數(shù)m的值;
(3)若對(duì)任意互不相同的實(shí)數(shù)x1,x2∈[1,5],恒有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<k成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)向量$\overrightarrow a=({{x_1},{y_1}}),\overrightarrow b=({{x_2},{y_2}})$,定義運(yùn)算:$\overrightarrow a$*$\overrightarrow b$=(x1x2,y1y2).已知向量$\overrightarrow m=({2,2})$,$\overrightarrow n=({\frac{π}{3},-1})$,點(diǎn)P在y=sinx的圖象上運(yùn)動(dòng),點(diǎn)Q在函數(shù)y=f(x)的圖象上運(yùn)動(dòng),且滿足$\overrightarrow{OQ}=\overrightarrow m*\overrightarrow{OP}$$+\overrightarrow n$(其中O為坐標(biāo)原點(diǎn)),
(Ⅰ)求y=f(x)的解析式;
(Ⅱ)當(dāng)$x∈[{-\frac{π}{3},\frac{5π}{3}}]$時(shí),求函數(shù)y=f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.給出下列五種說法:
(1)方程2x-x2=0有兩解.
(2)若函數(shù)y=f(x)是函數(shù)y=ax(a>0,且a≠1)的反函數(shù),且f(2)=2,則a=2.
(3)三棱錐V-ABC中,VA=VB=AC=BC=2,AB=2$\sqrt{3}$,VC=1,則二面角V-AB-C的大小為60°.
(4)已知函數(shù)f(x)為R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x(x+1).若f(a)=-2,則實(shí)數(shù)a=-1.
(5)若y=f(x)在定義域(-1,1)上是減函數(shù),且f(1-a)<f(2a-1),則實(shí)數(shù)a<$\frac{2}{3}$.
其中正確說法的序號(hào)是(3)(4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知向量$\overrightarrow{a}$=(sinθ,cosθ)(θ∈R),$\overrightarrow$=(1,$\sqrt{3}$).
(1)當(dāng)θ為何值時(shí),向量$\overrightarrow{a}$+$\overrightarrow$,$\overrightarrow$不能作為平面向量的一組基底;
(2)求$\overrightarrow{a}$+$\overrightarrow$在$\overrightarrow$上的投影的最大值;
(3)求|$\overrightarrow{a}$-2$\overrightarrow$|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.經(jīng)市場(chǎng)調(diào)查,某商品在過去20天的日銷售量和日銷售價(jià)格均為銷售時(shí)間t(天)的函數(shù),日銷售量(單位:件)近似地滿足:f (t)=-t+30(1≤t≤20,t∈N*),日銷售價(jià)格(單位:元)近似地滿足:g(t)=$\left\{\begin{array}{l}2t+40,1≤t≤10,t∈N*\\ 15,11≤t≤20,t∈N*\end{array}$
(1)寫出該商品的日銷售額S關(guān)于時(shí)間t的函數(shù)關(guān)系;
(2)當(dāng)t等于多少時(shí),日銷售額S最大?并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)函數(shù)y=f(x)滿足f(-x)+f(x)=0且f(x+1)=f(x-1),若x∈(0,1)時(shí),f(x)=log2$\frac{1}{1-x}$,則y=f(x)在(1,2)內(nèi)是( 。
A.單調(diào)增函數(shù),且f(x)<0B.單調(diào)減函數(shù),且f(x)<0
C.單調(diào)增函數(shù),且f(x)>0D.單調(diào)增函數(shù),且f(x)>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.“k<0”是“方程$\frac{{x}^{2}}{1-k}$+$\frac{{y}^{2}}{k}$=1表示雙曲線”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知$f(x)=\frac{x}{1+x}(x≥0)$,數(shù)列{an}滿足a1=f(1),且an+1=f(an)(n∈N+),則a2015=$\frac{1}{2016}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案