17.點A(m,-5)到直線l:y=-2的距離是3.

分析 根據(jù)題意,利用點到直線的距離公式,即可求出結(jié)果.

解答 解:點A(m,-5)到直線l:y=-2的距離是d=|-5-(-2)|=3.
故答案為:3.

點評 本題考查了點到直線的距離計算問題,是基礎題目.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

13.已知x+3y=1(x>0,y>0),則xy的最大值是$\frac{1}{12}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知三棱錐A-BCD中,AB⊥平面ACD,AC=AD=2,AB=4,CD=2$\sqrt{2}$,則三棱錐A-BCD外接球的表面積與內(nèi)切球表面積的比為24:1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知數(shù)列{an}的前n項和為Sn,且3Sn=4an-4,數(shù)列{bn} 滿足bn=log2an
(Ⅰ)求數(shù)列{an}、{bn}的通項公式;
(Ⅱ)數(shù)列{cn}滿足cn=b1+b2+…+bn,記Tn=$\frac{1}{c_1}$+$\frac{1}{c_2}$+…+$\frac{1}{c_n}$,求使k•$\frac{{n•{2^n}}}{n+1}$≥(2n-9)Tn 恒成立的實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知某正四面體的內(nèi)切球體積是1,則該正四面體的外接球的體積是27.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.設A=10,B=20,則可已實現(xiàn)A,B的值互換的語句是(  )
A.A=10 B=20 B=A A=BB.A=10 B=20 C=A B=C
C.A=10 B=20 C=A A=B B=CD.A=10 B=20 C=A D=B B=C A=B

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知,$\overrightarrow a$、$\overrightarrow b$、$\overrightarrow c$同一平面內(nèi)的三個向量,其中$\overrightarrow a$=(2,1).
(1)若|$\overrightarrow c$|=2$\sqrt{5}$,且$\overrightarrow c$∥$\overrightarrow a$,求$\overrightarrow c$的坐標;
(2)若|$\overrightarrow b$|=$\frac{{\sqrt{5}}}{2}$,且$\overrightarrow a$+2$\overrightarrow b$與2$\overrightarrow a$-$\overrightarrow b$垂直,求$\overrightarrow a$與$\overrightarrow b$的夾角θ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=log${\;}_{\frac{1}{2}}}$[$\sqrt{2}$sin(x-$\frac{π}{4}$)].
(1)求f(x)的定義域和值域;
(2)說明f(x)的奇偶性;
(3)求f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.數(shù)列{an}是首項為a1=11,公差為d=-2的等差數(shù)列,那么使前n項和Sn最大的n值為( 。
A.4B.5C.6D.7

查看答案和解析>>

同步練習冊答案