分析 (1)令y=x可得f(x)=$\frac{1}{2}$+$\frac{1}{2}$f(2x);
(2)根據(jù)數(shù)學(xué)歸納法的證明步驟,即可證明結(jié)論.
解答 證明:(1)令y=x可得f(2x)+1=f(x)+f(x),
所以f(x)=$\frac{1}{2}$+$\frac{1}{2}$f(2x)…(3分)
(2)①當(dāng)n=1時(shí),x∈[$\frac{1}{4}$,$\frac{1}{2}$],則2x∈[$\frac{1}{2}$,1],所以f(2x)≤0
又f(2x)+1=2f(x),所以f(x)=$\frac{1}{2}$+$\frac{1}{2}$f(2x)≤$\frac{1}{2}$=1-$\frac{1}{2}$
所以當(dāng)n=1時(shí)命題成立.…(7分)
②假設(shè)n=k時(shí)命題成立,即當(dāng)x∈[$\frac{1}{{2}^{k+1}}$,$\frac{1}{{2}^{k}}$](k∈N*)時(shí),f(x)≤1-$\frac{1}{{2}^{k}}$
則當(dāng)n=k+1時(shí),x∈[$\frac{1}{{2}^{k+2}}$,$\frac{1}{{2}^{k+1}}$],2x∈[$\frac{1}{{2}^{k+1}}$,$\frac{1}{{2}^{k}}$],則
f(x)=$\frac{1}{2}$+$\frac{1}{2}$f(2x)≤$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{{2}^{k+1}}$=1-$\frac{1}{{2}^{k+1}}$
當(dāng)n=k+1時(shí)命題成立.…(15分)
綜上①②可知,當(dāng)x∈[$\frac{1}{{2}^{n+1}}$,$\frac{1}{{2}^{n}}$](n∈N*)時(shí),f(x)≤1-$\frac{1}{{2}^{n}}$.…(16分)
點(diǎn)評(píng) 本題主要考查數(shù)學(xué)歸納法,數(shù)學(xué)歸納法的基本形式:設(shè)P(n)是關(guān)于自然數(shù)n的命題,若1°P(n0)成立(奠基),2°假設(shè)P(k)成立(k≥n0),可以推出P(k+1)成立(歸納),則P(n)對(duì)一切大于等于n0的自然數(shù)n都成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | -$\frac{8}{9}$ | C. | -$\frac{7}{9}$ | D. | $\frac{7}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
x | 3 | 4 | 5 | 6 | 7 |
y | 5.8 | 8.2 | 9.7 | 12.2 | 14.1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | 13 | C. | 21 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第9項(xiàng) | B. | 第8項(xiàng) | C. | 第9項(xiàng)和第10項(xiàng) | D. | 第8項(xiàng)和第9項(xiàng) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com