15.已知數(shù)列{an}中,${a_1}=1,{a_{n+1}}=\frac{a_n}{{{a_n}+1}}$如果${b_n}=\frac{a_n}{n+2}$,則數(shù)列{bn}的前n項和為$\frac{3}{4}$-$\frac{2n+3}{2({n}^{2}+3n+2)}$.

分析 由${a_1}=1,{a_{n+1}}=\frac{a_n}{{{a_n}+1}}$,兩邊取倒數(shù)可得:$\frac{1}{{a}_{n+1}}-\frac{1}{{a}_{n}}$=1,利用等差數(shù)列的通項公式可得:an=$\frac{1}{n}$.可得bn=$\frac{1}{n(n+2)}$=$\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})$,再利用“裂項求和”即可得出.

解答 解:∵${a_1}=1,{a_{n+1}}=\frac{a_n}{{{a_n}+1}}$,
兩邊取倒數(shù)可得:$\frac{1}{{a}_{n+1}}-\frac{1}{{a}_{n}}$=1,
∴數(shù)列$\{\frac{1}{{a}_{n}}\}$是等差數(shù)列,首項為1,公差為1,
∴$\frac{1}{{a}_{n}}$=1+(n-1)=n,
∴an=$\frac{1}{n}$.
∴${b_n}=\frac{a_n}{n+2}$=$\frac{1}{n(n+2)}$=$\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})$,
則數(shù)列{bn}的前n項和=$\frac{1}{2}[(1-\frac{1}{3})+(\frac{1}{2}-\frac{1}{4})+(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{n-1}-\frac{1}{n+1})+(\frac{1}{n}-\frac{1}{n+2})]$
=$\frac{1}{2}(1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2})$
=$\frac{3}{4}$-$\frac{2n+3}{2({n}^{2}+3n+2)}$.

點評 本題考查了“裂項求和”方法、等差數(shù)列的通項公式、遞推式的應(yīng)用,考查了變形能力、推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.“x>1”是“$\frac{1}{x}<1$”的( 。
A.充要條件B.充分非必要條件
C.必要非充分條件D.既非充分又非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若函數(shù)y=f(x)在點x=1處的導(dǎo)數(shù)為1,則$\underset{lim}{△x→0}$$\frac{f(1+△x)-f(x)}{△x}$=( 。
A.2B.1C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.定義在閉區(qū)間[a,b]上的連續(xù)函數(shù)y=f(x)有唯一的極值點x=x0,且y極小值=f(x0),則下列說法正確的是( 。
A.函數(shù)f(x)在[a,b]上不一定有最小值
B.函數(shù)f(x)在[a,b]上有最小值,但不一定是f(x0
C.函數(shù)f(x)在[a,b]上有最小值f(x0
D.函數(shù)f(x)在[a,b]上的最大值也可能是f(x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在△ABC中,已知a=40,b=20$\sqrt{2}$,A=45°,則角B等于( 。
A.60°B.60°或120°C.30°D.30°或150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)f(x)滿足f(x)=f($\frac{1}{x}$),當x∈[1,3]時,f(x)=lnx,若在區(qū)間[$\frac{1}{3}$,3]內(nèi),函數(shù)g(x)=f(x)-ax與x軸有三個不同的交點,則實數(shù)a的取值范圍是[$\frac{ln3}{3}$,$\frac{1}{e}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖,正方形ABCD的邊長為1,點P從頂點A沿著A→B的方向向頂點B運動,速度為2,同時,點Q從頂點B沿著B→C方向向頂點C運動,速度為1,則|PQ|的最小值為( 。
A.0B.$\frac{\sqrt{5}}{5}$C.$\frac{\sqrt{2}}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)$\overrightarrow{a}$=(x,2y,3),$\overrightarrow$=(1,1,6),且$\overrightarrow{a}$∥$\overrightarrow$,則x+y等于( 。
A.$\frac{1}{2}$B.$\frac{3}{4}$C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知$\overrightarrow{a}$=(-3,4),$\overrightarrow$=(5,2),求|$\overrightarrow{a}$|,|$\overrightarrow$|,$\overrightarrow{a}$•$\overrightarrow$.

查看答案和解析>>

同步練習(xí)冊答案