【題目】如圖,在三棱錐P—ABC中,PA⊥平面ABC,AC⊥BC,D為PC中點,E為AD中點,PA=AC=2,BC=1.
(1)求證:AD⊥平面PBC:
(2)求PE與平面ABD所成角的正弦值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,已知曲線與曲線,(為參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系.
(1)寫出曲線,的極坐標方程;
(2)在極坐標系中,已知與,的公共點分別為,,,當時,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,直線的極坐標方程為.
(1)求的普通方程和的直角坐標方程;
(2)直線與軸的交點為,經(jīng)過點的直線與曲線交于兩點,若,求直線的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),mR.
(1)若m=﹣1,求函數(shù)在區(qū)間[,e]上的最小值;
(2)若m>0,求函數(shù)的單調(diào)增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,橢圓 的左焦點為,右頂點為,上頂點為.
(1)已知橢圓的離心率為,線段中點的橫坐標為,求橢圓的標準方程;
(2)已知△外接圓的圓心在直線上,求橢圓的離心率的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于定義在區(qū)間上的函數(shù),若任給,均有,則稱函數(shù)在區(qū)間上是封閉.
(1)試判斷在區(qū)間上是否封閉,并說明理由;
(2)若函數(shù)在區(qū)間上封閉,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】癌癥是迄今為止人類尚未攻克的疾病之一,目前,癌癥只能盡量預(yù)防.某醫(yī)學(xué)中心推出了一種抗癌癥的制劑,現(xiàn)對20位癌癥病人,進行醫(yī)學(xué)試驗測試藥效,測試結(jié)果分為“病人死亡”和“病人存活”,現(xiàn)對測試結(jié)果和藥物劑量(單位:)進行統(tǒng)計,規(guī)定病人在服用(包括)以上為“足量”,否則為“不足量”,統(tǒng)計結(jié)果顯示,這20病人
中“病人存活”的有13位,對病人服用的藥物劑量統(tǒng)計如下表:
編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
吸收量/ | 6 | 8 | 3 | 8 | 9 | 5 | 6 | 6 | 2 | 7 | 7 | 5 | 10 | 6 | 7 | 8 | 8 | 4 | 6 | 9 |
已知“病人存活”,但服用的藥物劑量不足的病人共1位.
(1)完成下列列聯(lián)表,并判斷是否可以在犯錯誤的概率不超過1%的前提下,認為“病人存活”與服用藥物的劑量足量有關(guān)?
服用藥物足量 | 服用藥物不足量 | 合計 | |
病人存活 | 1 | ||
病人死亡 | |||
合計 | 20 |
(2)若在該樣本“服用藥物劑量不足”的病人中隨機抽取3位,求這三人中恰有1位“病人存活”的概率.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標系,直線的極坐標方程為.
(1)寫出曲線的普通方程和直線的直角坐標方程;
(2)若直線與曲線相交于、兩點,求的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com