8.已知向量$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$滿足$\overrightarrow a$+$\overrightarrow b$+$\overrightarrow c$=$\overrightarrow 0$且$\overrightarrow a$⊥$\overrightarrow c$,|${\overrightarrow b}$|=2|${\overrightarrow a}$|,則tan<$\overrightarrow{a}$,$\overrightarrow$>=( 。
A.$\sqrt{3}$B.$\frac{{\sqrt{3}}}{3}$C.$-\frac{{\sqrt{3}}}{3}$D.$-\sqrt{3}$

分析 根據(jù)向量垂直的關(guān)系以及向量數(shù)量積的應(yīng)用先求出<$\overrightarrow{a}$,$\overrightarrow$>=$\frac{2π}{3}$,即可得到結(jié)論.

解答 解:∵$\overrightarrow a$+$\overrightarrow b$+$\overrightarrow c$=$\overrightarrow 0$,
∴$\overrightarrow c$=-($\overrightarrow a$+$\overrightarrow b$),
∵$\overrightarrow a$⊥$\overrightarrow c$,
∴且$\overrightarrow a$•$\overrightarrow c$=-($\overrightarrow a$+$\overrightarrow b$)•$\overrightarrow a$=-|$\overrightarrow a$|2-$\overrightarrow a$•$\overrightarrow b$=0,
即|$\overrightarrow a$2|+$\overrightarrow a$•$\overrightarrow b$=0,
則$\overrightarrow a$•$\overrightarrow b$=-|$\overrightarrow a$|2,
則cos<$\overrightarrow{a}$,$\overrightarrow$>=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}||\overrightarrow|}$=$\frac{-|\overrightarrow{a}{|}^{2}}{2|\overrightarrow{a}||\overrightarrow{a}|}=-\frac{1}{2}$,
則<$\overrightarrow{a}$,$\overrightarrow$>=$\frac{2π}{3}$,
則tan<$\overrightarrow{a}$,$\overrightarrow$>=tan$\frac{2π}{3}$=$-\sqrt{3}$,
故選:D.

點(diǎn)評(píng) 本題主要考查向量夾角的求解,根據(jù)向量垂直關(guān)系以及向量數(shù)量積的應(yīng)用是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.己知函數(shù)f(x)=2sinxcosx+a(1-2sin2x)的圖象關(guān)于直線x=-$\frac{π}{8}$對(duì)稱.
(1)求實(shí)數(shù)a的值,并求出函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x),x∈[-π,π]的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知AB為單位圓上的弦,P為單位圓上的點(diǎn),若f(λ)=|$\overrightarrow{BP}$-λ$\overrightarrow{BA}$|的最小值為m(其中λ∈R),P在單位圓上運(yùn)動(dòng)時(shí),m的最大值為$\frac{3}{2}$,則|$\overrightarrow{AB}$|的值為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.將函數(shù)y=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的圖象向右平移$\frac{π}{3}$個(gè)單位,再將圖象上所有點(diǎn)的橫坐標(biāo)縮短為原來(lái)的$\frac{1}{2}$倍(縱坐標(biāo)不變),所得圖象的解析式為y=sinx,則ω,φ的值分別為(  )
A.ω=$\frac{1}{2},φ=\frac{π}{6}$B.$ω=\frac{1}{2},φ=-\frac{π}{6}$C.$ω=2,φ=\frac{π}{6}$D.$ω=2,φ=-\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x≥1\\ x-2y+m≥0\\ x-y≤0\end{array}\right.$,若z=4x-y的最大值是15,則m=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)x,y滿足約束條件$\left\{{\begin{array}{l}{x+y≥1}\\{x-y≥-1}\\{3x-y≤3}\end{array}}\right.$,則目標(biāo)函數(shù)z=4x+y的最小值為(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.某工廠生產(chǎn)甲,乙兩種芯片,其質(zhì)量按測(cè)試指標(biāo)劃分為:指標(biāo)大于或等于82為合格品,小于82為次品.現(xiàn)隨機(jī)抽取這兩種芯片各100件進(jìn)行檢測(cè),檢測(cè)結(jié)果統(tǒng)計(jì)如表:
測(cè)試指標(biāo)[70,76)[76,82)[82,88)[88,94)[94,100]
芯片甲81240328
芯片乙71840296
(Ⅰ)試分別估計(jì)芯片甲,芯片乙為合格品的概率;
(Ⅱ)生產(chǎn)一件芯片甲,若是合格品可盈利40元,若是次品則虧損5元;生產(chǎn)一件芯片乙,若是合格品可盈利50元,若是次品則虧損10元.在(1)的前提下,記X為生產(chǎn)1件芯片甲和1件芯片乙所得的總利潤(rùn),求隨機(jī)變量X的概率分布及生產(chǎn)1件芯片甲和1件芯片乙所得總利潤(rùn)的平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.設(shè)全集U={-3,-2,-1,0,1,2,3},子集A={0,a,a+3},B={b,b+1,3}.已知A,B至少有一個(gè)公共元素2,求a,b的值和A∩∁UB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知冪函數(shù)f(x)=${x}^{-{m}^{2}+2m+3}$(m∈N)圖象關(guān)于原點(diǎn)對(duì)稱,且在[0,+∞)上為增函數(shù).
(1)求函數(shù) f (x)的解析式;
(2)若f(2x2-1)>f(3x-2),求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案