1.$\frac{2cos20°-cos40°}{sin40°}$=$\sqrt{3}$.

分析 利用誘導(dǎo)公式,兩角和的正弦函數(shù)公式,特殊角的三角函數(shù)值即可化簡得解.

解答 解:原式=$\frac{2sin70°-cos40°}{sin40°}$
=$\frac{2(sin30°cos40°+cos30°sin40°)-cos40°}{sin40°}$
=$\frac{2(\frac{1}{2}cos40°+\frac{\sqrt{3}}{2}sin40°)-cos40°}{sin40°}$
=$\frac{\sqrt{3}sin40°}{sin40°}$
=$\sqrt{3}$.
故答案為:$\sqrt{3}$.

點評 本題主要考查了誘導(dǎo)公式,兩角和的正弦函數(shù)公式,特殊角的三角函數(shù)值在三角函數(shù)化簡求值中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.求中心在原點,焦點在坐標(biāo)軸上,且經(jīng)過兩點P($\frac{1}{3}$,$\frac{1}{3}$),Q(0,-$\frac{1}{2}$)的橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知θ為向量$\overrightarrow{a}$與$\overrightarrow$的夾角,|$\overrightarrow{a}$|=2,|$\overrightarrow$|=1,關(guān)于x的一元二次方程x2-|$\overrightarrow{a}$|x+$\overrightarrow{a}$•$\overrightarrow$=0有實根.
(Ⅰ)求θ的取值范圍;
(Ⅱ)在(Ⅰ)的條件下,求函數(shù)f(θ)=sin(2θ+$\frac{π}{3}$)的最值及對應(yīng)的θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.求不定積分${∫}_{\;}^{\;}$(3ex-2sinx+x4-1)dx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若角α的終邊過點(2sin30°,2cos30°),則sinα的值等于( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知變量ξ~N(μ,σ2),那么下面哪個變量服從標(biāo)準(zhǔn)正態(tài)分布?( 。
A.ξB.ξ-μC.$\frac{ξ+μ}{σ}$D.$\frac{ξ-μ}{σ}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在平面直角坐標(biāo)系xOy中,橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{{\sqrt{2}}}{2}$,直線y=x被橢圓C截得的線段長為$\frac{{8\sqrt{3}}}{3}$.
( I)求橢圓C的方程.
(Ⅱ)直線l是圓O:x2+y2=r2的任意一條切線,l與橢圓C交于A、B兩點,若以AB為直徑的圓恒過原點,求圓O的方程,并求出|AB|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x)=sinx-cosx的值域為 ( 。
A.[-$\sqrt{2}$,$\sqrt{2}$]B.($\sqrt{2}$,$\sqrt{2}$)C.[-$\sqrt{2}$,2)D.(-$\sqrt{2}$,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在直角梯形ABCD中,AB=2AD=2DC,E為BC邊上的一點,$\overrightarrow{BC}$=3$\overrightarrow{EC}$,F(xiàn)為AE中點,則$\overrightarrow{BF}$=(  )
A.$\frac{2}{3}\overrightarrow{AB}$-$\frac{1}{3}$$\overrightarrow{AD}$B.$\frac{1}{3}$$\overrightarrow{AB}$-$\frac{2}{3}\overrightarrow{AD}$C.-$\frac{2}{3}\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AD}$D.-$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AD}$

查看答案和解析>>

同步練習(xí)冊答案