分析 畫出圖形,結(jié)合圖形,利用$\overrightarrow{BD}$=2$\overrightarrow{DC}$,得出$\overrightarrow{AD}$-$\overrightarrow{AB}$=2($\overrightarrow{AC}$-$\overrightarrow{AD}$),再利用平面向量的數(shù)量積求出|$\overrightarrow{AC}$|即可
解答 解:如圖所示:
△ABC中,∠BAC=120°,AB=4,點D在邊BC上,$\overrightarrow{BD}$=2$\overrightarrow{DC}$,
∴$\overrightarrow{BD}$=$\overrightarrow{AD}$-$\overrightarrow{AB}$,$\overrightarrow{DC}$=$\overrightarrow{AC}$-$\overrightarrow{AD}$,
∴$\overrightarrow{AD}$-$\overrightarrow{AB}$=2($\overrightarrow{AC}$-$\overrightarrow{AD}$),
∴3$\overrightarrow{AD}$=2$\overrightarrow{AC}$+$\overrightarrow{AB}$,
兩邊平方得9$\overrightarrow{AD}$2=4$\overrightarrow{AC}$2+4$\overrightarrow{AC}$•$\overrightarrow{AB}$+$\overrightarrow{AB}$2,
又AD=$\frac{2\sqrt{7}}{3}$,
∴9×($\frac{2\sqrt{7}}{3}$)2=4$\overrightarrow{AC}$2+4×|$\overrightarrow{AC}$|×4×cos120°+42,
化簡得|$\overrightarrow{AC}$|2-2|$\overrightarrow{AC}$|-3=0,
解得|$\overrightarrow{AC}$|=3或|$\overrightarrow{AC}$|=-1(不合題意舍去),
故答案為:3.
點評 本題考查了利用平面向量的線性運算與數(shù)量積運算求三角形邊長的應用問題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (1,$\frac{4}{3}$) | B. | ($\frac{2}{3}$,1] | C. | [$\frac{2}{3}$,1] | D. | [1,$\frac{4}{3}$] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | $\frac{1}{4}$ | D. | $-\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-$\frac{π}{4}$,0) | B. | (0,0) | C. | ($\frac{θ}{2}$,0) | D. | (θ,0) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | 6 | C. | 18 | D. | 24 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{5}\overrightarrow{AB}+\frac{4}{5}\overrightarrow{AC}$ | B. | $\frac{2}{5}\overrightarrow{AB}+\frac{3}{5}\overrightarrow{AC}$ | C. | $\frac{3}{5}\overrightarrow{AB}+\frac{2}{5}\overrightarrow{AC}$ | D. | $\frac{4}{5}\overrightarrow{AB}+\frac{1}{5}\overrightarrow{AC}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com