如圖,在正方體ABCD-A1B1C1D1中,AB=2.
(Ⅰ)求A1B與B1D1所成角的大。
(Ⅱ)求三棱錐A-BDA1的體積.
考點:異面直線及其所成的角,棱柱、棱錐、棱臺的體積
專題:空間角
分析:(Ⅰ)連接BD,DA1,容易得到∠DBA1=60°,且BD∥B1D1,所以A1B與B1D1所成的角為60°;
(Ⅱ)通過圖形可看出V三棱錐A-BDA1=V三棱錐A1-ABD=
1
3
•2•2=
4
3
解答: 解:(Ⅰ)如圖,連接BD,DA1,則B1D1∥BD,且△BA1D為等邊三角形;
∴∠DBA1=60°;
即A1B與B1D1所成角的大小為60°;
(Ⅱ)由圖可看出三棱錐A-BDA1的體積等于三棱錐A1-ABD的體積;
∵A1A⊥底面ABD,所以三棱錐A1-ABD的高是A1A=2,S底面ABD=2;
V三棱錐A1-ABD=
1
3
•2•2=
4
3
;
∴三棱錐A-BDA1的體積為
4
3
點評:考查異面直線所成角的概念及求法,三棱錐的體積公式.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若集合A、B、C,滿足A∩B=A,B∪C=C,則A與C之間的關(guān)系為( 。
A、A?CB、C?A
C、A⊆CD、C⊆A

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-px+3.
(1)若f(0)=f(4),求不等式f(x)≤0的解集;
(2)若函數(shù)f(x)在[1,+∞)上是增函數(shù),求p的取值范圍;
(3)當p=2時,若函數(shù)在[0,m]上的最大值為3,最小值為2,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

向量
a
=(x,1),
b
=(1,2-x),
a
b
,則|
a
|=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式
x-2
|x|-1
<0
的解集為(  )
A、{x|1<x<2}
B、{x|x<2且x≠1}
C、{x|-1<x<2且x≠1}
D、{x|x<-1或1<x<2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列一些關(guān)于數(shù)列{an}的命題:
①若{an}既是等差數(shù)列,又是等比數(shù)列,則{an}一定是常數(shù)數(shù)列;
②若{an}是等比數(shù)列,則數(shù)列{an+an+1}一定也是等比數(shù)列;
③若{an}滿足遞推公式an+1=an•q,則{an}一定是等比數(shù)列;
④若{an}的前n項和Sn=qn-1,則{an}一定是等比數(shù)列.
其中正確的有
 
(填寫序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題說法正確的是( 。
A、命題“若x2=1,則x=1”的否命題為:“若x2=1,則x≠1”
B、“0<x<3”是“|x-1|<1”的必要不充分條件
C、命題“?x∈R,使得x2+x-1<0”的否定是:“?x∈R,均有x2+x-1>0”
D、命題“若x=y,則sinx=siny”的逆命題為真命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
a•2x,x≥0
2-x,x<0
(a∈R).若f[f(-1)]=1,則a=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列1,1+2,1+2+22,…,1+2+22+…+2n-1,…的前n項和為( 。
A、2n-n-1
B、2n+1-n-2
C、2n
D、2n+1-n

查看答案和解析>>

同步練習冊答案