分析 (1)利用導(dǎo)數(shù)等于0,求出函數(shù)的極值;
(2)構(gòu)造函數(shù)g(x)=ex-x2,求出導(dǎo)數(shù),利用(1)的結(jié)論得到導(dǎo)函數(shù)的符號(hào),判斷g(x)的單調(diào)性,從而得出結(jié)論;
(3)a=0時(shí),顯然求出,a≠0時(shí),問(wèn)題轉(zhuǎn)化為y=ex和y=$\frac{1}{a}$x2的交點(diǎn)個(gè)數(shù),通過(guò)討論a的范圍結(jié)合(2),求出即可.
解答 解:(1)∵函數(shù)f(x)=ex-2x(x∈R),
∴f′(x)=ex-2;
令f′(x)=0,即ex-2=0,
解得x=ln2,
∴函數(shù)f(x)的極值是
f(ln2)=eln2-2ln2=2-2ln2;
(2)證明:設(shè)函數(shù)h(x)=ex-x2,
∴h′(x)=ex-2x;
由(1)知f(x)=ex-2x在x=ln2取得極小值,
∴h′(x)≥f(ln2)=eln2-ln2=2-ln2>0,
∴h(x)是R上的增函數(shù),
∴當(dāng)x>0時(shí),h(x)>h(0)=1>0,
∴ex>x2,即x2<ex;
∴當(dāng)x>0時(shí),曲線y=x2恒在曲線y=ex的下方;
(3)a=0時(shí),g(x)=x2,函數(shù)g(x)有1個(gè)零點(diǎn),
a≠0時(shí),論函數(shù)g(x)=x2-aex(a∈R)零點(diǎn)的個(gè)數(shù),
即討論y=ex和y=$\frac{1}{a}$x2的交點(diǎn)個(gè)數(shù),
①a<0時(shí),y=$\frac{1}{a}$x2開口向下,和y=ex無(wú)交點(diǎn),即函數(shù)g(x)無(wú)零點(diǎn);
②a>0時(shí),y=$\frac{1}{a}$x2開口向上,x<0時(shí)與y=ex1個(gè)交點(diǎn),
下面討論x>0的情況,
由(2)得:$\frac{1}{a}$≤1即a≥1時(shí),$\frac{1}{a}$x2<ex;
故0<a<1時(shí),y=ex和y=$\frac{1}{a}$x2有3個(gè)交點(diǎn),g(x)有3個(gè)零點(diǎn),
a≥1時(shí),y=ex和y=$\frac{1}{a}$x2有1個(gè)交點(diǎn),g(x)有1個(gè)零點(diǎn),
綜上:a<0時(shí),函數(shù)g(x)無(wú)零點(diǎn);a=0時(shí),函數(shù)g(x)有1個(gè)零點(diǎn),
0<a<1時(shí),g(x)有3個(gè)零點(diǎn),a≥1時(shí),g(x)有1個(gè)零點(diǎn).
點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的應(yīng)用問(wèn)題,也考查運(yùn)算求解能力以及邏輯推理能力,考查了函數(shù)與方程思想的應(yīng)用問(wèn)題,是難題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{10}$ | B. | $\frac{3}{10}$ | C. | $\frac{7}{10}$ | D. | $\frac{9}{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
損壞餐椅數(shù) | 未損壞餐椅數(shù) | 總 計(jì) | |
學(xué)習(xí)雷鋒精神前 | 50 | 150 | 200 |
學(xué)習(xí)雷鋒精神后 | 30 | 170 | 200 |
總 計(jì) | 80 | 320 | 400 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com