6.已知a>0,a≠1,若loga(2x+1)<loga(4x-3),求x的取值范圍.

分析 利用函數(shù)的單調(diào)性求解,分當(dāng)a>1時(shí),當(dāng)0<a<1時(shí),兩種結(jié)果取并集.

解答 解:loga(2x+1)<loga(4x-3),
當(dāng)a>1時(shí),$\left\{\begin{array}{l}{2x+1>0}\\{4x-3>0}\\{2x+1<4x-3}\end{array}\right.$,
解的x>2,
當(dāng)0<a<1時(shí),$\left\{\begin{array}{l}{2x+1>0}\\{4x-3>0}\\{2x+1>4x-3}\end{array}\right.$,
解的$\frac{3}{4}$<x<2
綜上所述x的取值范圍為($\frac{3}{4}$,2)∪(2,+∞).

點(diǎn)評 本題主要考查利用函數(shù)單調(diào)性定義解抽象不等式,一般來講,抽象不等式的解法是利用函數(shù)的單調(diào)性.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)集合A={a,b,c},B={b,c},則滿足S⊆A且S∩B≠∅的集合S的個(gè)數(shù)是6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.條件甲:$\left\{\begin{array}{l}{2<x+y<4}\\{0<xy<3}\end{array}\right.$;條件乙:$\left\{\begin{array}{l}{0<x<1}\\{2<y<3}\end{array}\right.$,則甲是乙的( 。
A.必要而不充分條件B.充分而不必要條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)的定義域?yàn)镈,若存在非零常數(shù)t,使得對于任意x∈M(M⊆D),有x+t∈D,且f(x+t)≥f(x),則稱f(x)為M上的t階函數(shù),如果定義域?yàn)镽的函數(shù)f(x)是奇函數(shù),當(dāng)x≥0時(shí),f(x)=|x-2a2|-2a2,且f(x)為R上的8階函數(shù),那么實(shí)數(shù)a的取值范圍是(  )
A.[-1,1]B.[-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$]C.(-∞,-1]∪[1,+∞)D.(-∞,-$\frac{\sqrt{2}}{2}$]∪[$\frac{\sqrt{2}}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知集合A={-1,3},B={x|x2+ax+b=0},且A=B,則ab=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.直線y=1被橢圓$\frac{{x}^{2}}{4}$$+\frac{{y}^{2}}{2}$=1截得的線段長為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=ax2-bx+2滿足f(1)=1,且對x∈R都有f(x)≥x恒成立.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)設(shè)函數(shù)g(t)=4t-$\frac{10}{t}$+k(k∈R),對任意t∈[1,2],存在x∈[-1,2],使得g(t)<f(x),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)離心率為$\frac{1}{2}$,F(xiàn)1、F2分別為左、右焦點(diǎn),過F1垂直與長軸的弦長為3$\sqrt{2}$.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)如圖,以橢圓長軸AB為直徑的圓:x2+y2=a2,P為圓O上與A,B不重合的一點(diǎn),設(shè)PA與橢圓交于D,設(shè)直線DF2,PB的斜率分別為k1,k2,若k1=λk2,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若lga,lgb是方程2x2-4x-2015=0的兩根,則log2(lgab)的值為( 。
A.2B.1C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

同步練習(xí)冊答案