2.若等比數(shù)列{an}的各項均為正數(shù),且a10a11+a9a12=2e5,則lna1+lna2+lna3+…+lna20=50.

分析 由等比數(shù)列的性質(zhì)得lna1+lna2+lna3+…+lna20=ln(a1×a2010,由此能求出結(jié)果.

解答 解:∵等比數(shù)列{an}的各項均為正數(shù),且a10a11+a11a12=2c2
∴l(xiāng)na1+lna2+lna3+…+lna20
=ln(a1×a2×a3×…×a20
=ln(a1×a2010
=ln(e510
=50.
故答案為:50.

點評 本題考查對數(shù)式求值,是基礎(chǔ)題,解題時要認(rèn)真審題,注意對數(shù)性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-3,4),求|$\overrightarrow{a}$+$\overrightarrow$|及$\overrightarrow{a}$•($\overrightarrow{a}$+2$\overrightarrow$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)函數(shù)f(x)是偶函數(shù),且x≥0時,f(x)=x2+log2(x+2)-3,則滿足f(x-x2)<3的實數(shù)x的取值范圍是( 。
A.($\frac{\sqrt{13}-1}{2}$,$\frac{\sqrt{13}+1}{2}$)B.($\frac{1-\sqrt{13}}{2}$,$\frac{1+\sqrt{13}}{2}$)C.(-2,1)D.(-1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知關(guān)于x的不等式$\sqrt{x}$+$\sqrt{2-x}$≥k有實數(shù)解,則實數(shù)k的取值范圍是(-∞,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)f(x)=a+log2($\sqrt{{x}^{2}+4}$+x)為奇函數(shù),則a的值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知tanα=7,求下列各式的值:
(1)$\frac{sinα+cosα}{2sinα-cosα}$
(2)sin2α+sinαcosα+3cos2α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知-6π<α<-4π,且角α與角$\frac{2π}{3}$的終邊相同,求α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在△ABC中,a,b,c分別是內(nèi)角A,B,C的對邊,已知△ABC的面積S=$\frac{3\sqrt{3}}{4}$,c=$\sqrt{7}$,sin2A+sin2B-sin2C-sinAsinB=0.
(1)求角C;
(2)求a+b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)y=2x與y=log2x的圖象( 。
A.關(guān)于x軸對稱B.關(guān)于原點對稱
C.關(guān)于直線y=x對稱D.關(guān)于直線y=-x對稱

查看答案和解析>>

同步練習(xí)冊答案