7.已知tanα=7,求下列各式的值:
(1)$\frac{sinα+cosα}{2sinα-cosα}$
(2)sin2α+sinαcosα+3cos2α

分析 由條件利用同角三角函數(shù)的基本關(guān)系,求得要求式子的值.

解答 解:(1)∵tanα=7,∴$\frac{sinα+cosα}{2sinα-cosα}$=$\frac{tanα+1}{2tanα-1}$=$\frac{8}{14-1}$=$\frac{8}{13}$.
(2)∵tanα=7,∴sin2α+sinαcosα+3cos2α=$\frac{{sin}^{2}α+sinαcosα+{3cos}^{2}α}{{sin}^{2}α{+cos}^{2}α}$=$\frac{{tan}^{2}α+tanα+3}{{tan}^{2}α+1}$=$\frac{49+7+3}{49+1}$=$\frac{59}{50}$.

點(diǎn)評(píng) 本題主要考查同角三角函數(shù)的基本關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.下列抽樣方法是簡(jiǎn)單隨機(jī)抽樣的是④.
①50個(gè)零件中一次性抽取5個(gè)做質(zhì)量檢驗(yàn);
②從50個(gè)零件中有放回地抽取5個(gè)做質(zhì)量檢驗(yàn);
③從實(shí)數(shù)集中隨意抽取10個(gè)數(shù)分析奇偶性;
④運(yùn)動(dòng)員從8個(gè)跑道中隨機(jī)地抽取一個(gè)跑道.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)f(x),g(x)均為奇函數(shù),定義域都為[-a,a](a>0),則f(g(x))為( 。
A.奇函數(shù)B.偶函數(shù)C.非奇非偶函數(shù)D.無法判斷奇偶性

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若圓C:x2+y2=4,點(diǎn)P在直線l:2x-y-6=0上,過點(diǎn)P作圓C的切線PE,PF,切點(diǎn)為E,F(xiàn),則$\overrightarrow{PE}$$•\overrightarrow{PF}$的最小值為$-\frac{16}{45}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若等比數(shù)列{an}的各項(xiàng)均為正數(shù),且a10a11+a9a12=2e5,則lna1+lna2+lna3+…+lna20=50.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.計(jì)算:
(1)$\frac{{a}^{-1}+^{-1}}{(ab)^{-1}}$
(2)16${\;}^{\frac{1}{2}}$-($\frac{1}{16}$)${\;}^{\frac{3}{4}}$-($\frac{1}{2}$)-3
(3)(${a}^{\frac{2}{3}}^{\frac{1}{2}}$)(-3a${\;}^{\frac{1}{2}}$b${\;}^{\frac{1}{3}}$)÷($\frac{1}{3}$a${\;}^{\frac{1}{6}}$b${\;}^{\frac{5}{6}}$)(b≠0)
(4)$\root{3}{{a}^{\frac{7}{2}}\sqrt{{a}^{-3}}}$÷$\sqrt{\root{3}{{a}^{-8}}\root{3}{{a}^{15}}}$÷$\root{3}{\sqrt{{a}^{-3}}\sqrt{{a}^{-1}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.方程(1+λ)x+(2λ-1)y+(1-8λ)=0(λ∈R)過某定點(diǎn),此定點(diǎn)的坐標(biāo)是(2,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-2ax+4a(x<1)}\\{(a-3)x+4a(x≥1)}\end{array}\right.$,滿足對(duì)任意x1≠x2,都有 $\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0成立,則a的取值范圍是( 。
A.(0,$\frac{3}{4}$)B.(0,$\frac{3}{4}$]C.(0,1)D.[1,$\frac{4}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在銳角△ABC中,已知AB=2,∠B=2∠C,則AC的取值范圍是( 。
A.(2$\sqrt{2}$,2$\sqrt{3}$)B.(2,2$\sqrt{2}$)C.(2$\sqrt{2}$,4)D.(2,2$\sqrt{3}$)

查看答案和解析>>

同步練習(xí)冊(cè)答案