16.已知函數(shù)f(x)=$\frac{1-x}{ax}$+lnx,若函數(shù)f(x)在[1,+∞)上為增函數(shù),則正實(shí)數(shù)a的取值范圍為( 。
A.(1,+∞)B.[1,+∞)C.(-∞,1)D.(-∞,1]

分析 求f(x)的導(dǎo)數(shù)f′(x),利用f′(x)判定f(x)的單調(diào)性,求出f(x)的單調(diào)增區(qū)間,即得正實(shí)數(shù)a的取值范圍.

解答 解:∵f(x)=$\frac{1-x}{ax}$+lnx(a>0),
∴f′(x)=$\frac{ax-1}{{ax}^{2}}$(x>0),
令f′(x)=0,得x=$\frac{1}{a}$,
∴函數(shù)f(x)在(0,$\frac{1}{a}$]上f′(x)≤0,在[$\frac{1}{a}$,+∞)上f′(x)≥0,
∴f(x)在(0,$\frac{1}{a}$]上是減函數(shù),在[$\frac{1}{a}$,+∞)上是增函數(shù);
∵函數(shù)f(x)在區(qū)間[1,+∞)內(nèi)是增函數(shù),
∴$\frac{1}{a}$≤1,又a>0,∴a≥1,
∴實(shí)數(shù)a的取值范圍是[1,+∞);
故選:B.

點(diǎn)評(píng) 本題考查了利用導(dǎo)數(shù)來(lái)研究函數(shù)的單調(diào)性問(wèn)題,解題時(shí)應(yīng)根據(jù)導(dǎo)數(shù)的正負(fù)來(lái)判定函數(shù)的單調(diào)性,利用函數(shù)的單調(diào)區(qū)間來(lái)解答問(wèn)題,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.某校的籃球隊(duì)有A,B,C,D,E,F(xiàn)六名候補(bǔ)隊(duì)員,在一次與另一學(xué)校的友誼賽中,教練打算從六名候補(bǔ)隊(duì)員中隨機(jī)抽取三名參加比賽,則候補(bǔ)隊(duì)員A,C,E中至少有一個(gè)被抽中的概率是( 。
A.$\frac{1}{20}$B.$\frac{2}{3}$C.$\frac{7}{9}$D.$\frac{19}{20}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.某公司計(jì)劃從五位大學(xué)畢業(yè)生甲、乙、丙、丁、戌中錄用兩人,若這五人被錄用的機(jī)會(huì)均等,則甲或乙被錄用的概率為$\frac{7}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.在直角坐標(biāo)系xOy中,已知曲線(xiàn)C1的參數(shù)方程是$\left\{\begin{array}{l}{x=\sqrt{t}}\\{y=\frac{\sqrt{3t}}{3}}\end{array}\right.$(t為參數(shù)),在以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸的極坐標(biāo)系中,曲線(xiàn)C2的極坐標(biāo)方程是ρ=2,求曲線(xiàn)C1與C2的交點(diǎn)在直角坐標(biāo)系中的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.如圖,一個(gè)摩天輪的半徑為18m,12分鐘旋轉(zhuǎn)一周,它的最低點(diǎn)P0離地面2m,
∠P0OP1=15°,摩天輪上的一個(gè)點(diǎn)P從P1開(kāi)始按逆時(shí)針?lè)较蛐D(zhuǎn),則點(diǎn)P離地
面距離y(m)與時(shí)間x(分鐘)之間的函數(shù)關(guān)系式是( 。
A.$y=-18cos\frac{π}{12}(x+1)+20$B.$y=-18cos\frac{π}{12}(x-1)+20$
C.$y=-18cos\frac{π}{6}(x+\frac{1}{2})+20$D.$y=-18cos\frac{π}{6}(x-\frac{1}{2})+20$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,AB是⊙O的直徑,C、F是⊙O上的兩點(diǎn),OC⊥AB,過(guò)點(diǎn)F作⊙O的切線(xiàn)FD交AB的延長(zhǎng)線(xiàn)于點(diǎn)D,連接CF交AB于點(diǎn)E.
(1)求證:DF=DE;
(2)若DB=2,DF=4,求⊙O的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.如圖,A,B,C是⊙O上的三點(diǎn),點(diǎn)D是劣弧$\widehat{BC}$的中點(diǎn),過(guò)點(diǎn)B的切線(xiàn)交弦CD的延長(zhǎng)線(xiàn)于點(diǎn)E.若∠BAC=80°,則∠BED=60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知偶函數(shù)f(x)是定義在{x∈R|x≠0}上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為f′(x),當(dāng)x<0時(shí),f′(x)>$\frac{f(x)}{x}$恒成立,設(shè)m>1,記a=$\frac{4m•f(m+1)}{m+1}$,b=2$\sqrt{m}$•f(2$\sqrt{m}$),c=(m+1)•f($\frac{4m}{m+1}$),則a,b,c的大小關(guān)系為( 。
A.a<b<cB.a>b>cC.b<a<cD.b>a>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.不等式組$\left\{\begin{array}{l}{x+y-2≥0}\\{x+2y-4≤0}\\{x+3y-2≥0}\end{array}\right.$表示的平面區(qū)域的面積為( 。
A.2B.4C.6D.8

查看答案和解析>>

同步練習(xí)冊(cè)答案