A. | (1,+∞) | B. | [1,+∞) | C. | (-∞,1) | D. | (-∞,1] |
分析 求f(x)的導(dǎo)數(shù)f′(x),利用f′(x)判定f(x)的單調(diào)性,求出f(x)的單調(diào)增區(qū)間,即得正實(shí)數(shù)a的取值范圍.
解答 解:∵f(x)=$\frac{1-x}{ax}$+lnx(a>0),
∴f′(x)=$\frac{ax-1}{{ax}^{2}}$(x>0),
令f′(x)=0,得x=$\frac{1}{a}$,
∴函數(shù)f(x)在(0,$\frac{1}{a}$]上f′(x)≤0,在[$\frac{1}{a}$,+∞)上f′(x)≥0,
∴f(x)在(0,$\frac{1}{a}$]上是減函數(shù),在[$\frac{1}{a}$,+∞)上是增函數(shù);
∵函數(shù)f(x)在區(qū)間[1,+∞)內(nèi)是增函數(shù),
∴$\frac{1}{a}$≤1,又a>0,∴a≥1,
∴實(shí)數(shù)a的取值范圍是[1,+∞);
故選:B.
點(diǎn)評(píng) 本題考查了利用導(dǎo)數(shù)來(lái)研究函數(shù)的單調(diào)性問(wèn)題,解題時(shí)應(yīng)根據(jù)導(dǎo)數(shù)的正負(fù)來(lái)判定函數(shù)的單調(diào)性,利用函數(shù)的單調(diào)區(qū)間來(lái)解答問(wèn)題,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{20}$ | B. | $\frac{2}{3}$ | C. | $\frac{7}{9}$ | D. | $\frac{19}{20}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $y=-18cos\frac{π}{12}(x+1)+20$ | B. | $y=-18cos\frac{π}{12}(x-1)+20$ | ||
C. | $y=-18cos\frac{π}{6}(x+\frac{1}{2})+20$ | D. | $y=-18cos\frac{π}{6}(x-\frac{1}{2})+20$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a<b<c | B. | a>b>c | C. | b<a<c | D. | b>a>c |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com