科目: 來源:2013屆山西省晉商四校高二下學期文科數(shù)學試卷(解析版) 題型:填空題
圓柱形容器內(nèi)部盛有高度為8 cm的水,若放入三個相同的球(球的半徑與圓柱的底面半徑相同)后,水恰好淹沒最上面的球(如圖所示),則球的半徑是 _____cm.
查看答案和解析>>
科目: 來源:2013屆山西省晉商四校高二下學期文科數(shù)學試卷(解析版) 題型:填空題
若三邊長分別為、、,內(nèi)切圓的半徑為,則的面積,類比上述命題猜想:若四面體四個面的面積分別為、、、,內(nèi)切球的半徑為,則四面體的體積
查看答案和解析>>
科目: 來源:2013屆山西省晉商四校高二下學期文科數(shù)學試卷(解析版) 題型:填空題
函數(shù)的定義域為開區(qū)間,導函數(shù)在內(nèi)的圖象如圖所示,則函數(shù)在開區(qū)間內(nèi)的極小值點有 個
查看答案和解析>>
科目: 來源:2013屆山西省晉商四校高二下學期文科數(shù)學試卷(解析版) 題型:解答題
如圖,已知⊙中,直徑垂直于弦,垂足為,是延長線上一點,切⊙于點,連接交于點,證明:
【解析】本試題主要考查了直線與圓的位置關系的運用。要證明角相等,一般運用相似三角形來得到,或者借助于弦切角定理等等。根據(jù)為⊙的切線,∴為弦切角
連接 ∴…注意到是直徑且垂直弦,所以 且…利用,可以證明。
解:∵為⊙的切線,∴為弦切角
連接 ∴……………………4分
又∵ 是直徑且垂直弦 ∴ 且……………………8分
∴ ∴
查看答案和解析>>
科目: 來源:2013屆山西省晉商四校高二下學期文科數(shù)學試卷(解析版) 題型:解答題
在極坐標系中,圓:和直線相交于、兩點,求線段的長
【解析】本試題主要考查了極坐標系與參數(shù)方程的運用。先將圓的極坐標方程圓: 即 化為直角坐標方程即
然后利用直線 即,得到圓心到直線的距離,從而利用勾股定理求解弦長AB。
解:分別將圓和直線的極坐標方程化為直角坐標方程:
圓: 即 即 ,
即, ∴ 圓心, ---------3分
直線 即, ------6分
則圓心到直線的距離,----------8分
則 即所求弦長為
查看答案和解析>>
科目: 來源:2013屆山西省晉商四校高二下學期文科數(shù)學試卷(解析版) 題型:解答題
已知數(shù)列的通項公式,
,試通過計算的值,推測出的值。
【解析】本試題主要考查了數(shù)列通項公式的運用和歸納猜想思想的運用。由的通項公式得到,,并根據(jù)結果可猜想。
解:……………………2分
…………4分
…………6分
由此猜想,
查看答案和解析>>
科目: 來源:2013屆山西省晉商四校高二下學期文科數(shù)學試卷(解析版) 題型:解答題
2011年3月日本發(fā)生的9.0級地震引發(fā)了海嘯和核泄漏。核專家為檢測當?shù)貏游锸芎溯椛浜髮ι眢w健康的影響,隨機選取了110只羊進行檢測。其中身體健康的50只中有30只受到高度輻射,余下的60只身體不健康的羊中有10只受輕微輻射。
(1)作出2×2列聯(lián)表
(2)判斷有多大把握認為羊受核輻射對身體健康有影響?
【解析】本試題主要考查了列聯(lián)表的運用,以及判定兩個分類變量之間的相關性問題的運用首先根據(jù)題意得到2×2列聯(lián)表:,然后求解的觀測值為
因為,因此可知有99%的把握可以認為羊受核輻射對身體健康有影響。
解:(1)2×2列聯(lián)表:
輻射程度健康類型 |
高度輻射 |
輕微輻射 |
合 計 |
身體健康 |
30 |
20 |
50 |
身體不健康 |
50 |
10 |
60 |
合 計 |
80 |
30 |
110 |
--------5分
-
(Ⅱ)的觀測值為
-----9分
而
∴有99%的把握可以認為羊受核輻射對身體健康有影響。
查看答案和解析>>
科目: 來源:2013屆山西省晉商四校高二下學期文科數(shù)學試卷(解析版) 題型:解答題
在棱長為的正方體中,是線段的中點,.
(1) 求證:^;
(2) 求證://平面;
(3) 求三棱錐的表面積.
【解析】本試題考查了線線垂直和線面平行的判定定理和表面積公式的運用。第一問中,利用,得到結論,第二問中,先判定為平行四邊形,然后,可知結論成立。
第三問中,是邊長為的正三角形,其面積為,
因為平面,所以,
所以是直角三角形,其面積為,
同理的面積為, 面積為. 所以三棱錐的表面積為.
解: (1)證明:根據(jù)正方體的性質(zhì),
因為,
所以,又,所以,,
所以^. ………………4分
(2)證明:連接,因為,
所以為平行四邊形,因此,
由于是線段的中點,所以, …………6分
因為面,平面,所以∥平面. ……………8分
(3)是邊長為的正三角形,其面積為,
因為平面,所以,
所以是直角三角形,其面積為,
同理的面積為, ……………………10分
面積為. 所以三棱錐的表面積為
查看答案和解析>>
科目: 來源:2013屆山西省晉商四校高二下學期文科數(shù)學試卷(解析版) 題型:解答題
設橢圓 :()的一個頂點為,,分別是橢圓的左、右焦點,離心率 ,過橢圓右焦點 的直線 與橢圓 交于 , 兩點.
(1)求橢圓的方程;
(2)是否存在直線 ,使得 ,若存在,求出直線 的方程;若不存在,說明理由;
【解析】本試題主要考查了橢圓的方程的求解,以及直線與橢圓的位置關系的運用。(1)中橢圓的頂點為,即又因為,得到,然后求解得到橢圓方程(2)中,對直線分為兩種情況討論,當直線斜率存在時,當直線斜率不存在時,聯(lián)立方程組,結合得到結論。
解:(1)橢圓的頂點為,即
,解得, 橢圓的標準方程為 --------4分
(2)由題可知,直線與橢圓必相交.
①當直線斜率不存在時,經(jīng)檢驗不合題意. --------5分
②當直線斜率存在時,設存在直線為,且,.
由得, ----------7分
,,
=
所以, ----------10分
故直線的方程為或
即或
查看答案和解析>>
科目: 來源:2013屆山西省晉商四校高二下學期文科數(shù)學試卷(解析版) 題型:解答題
已知,函數(shù)
(1)當時,求函數(shù)在點(1,)的切線方程;
(2)求函數(shù)在[-1,1]的極值;
(3)若在上至少存在一個實數(shù)x0,使>g(xo)成立,求正實數(shù)的取值范圍。
【解析】本試題中導數(shù)在研究函數(shù)中的運用。(1)中,那么當時, 又 所以函數(shù)在點(1,)的切線方程為;(2)中令 有
對a分類討論,和得到極值。(3)中,設,,依題意,只需那么可以解得。
解:(Ⅰ)∵ ∴
∴ 當時, 又
∴ 函數(shù)在點(1,)的切線方程為 --------4分
(Ⅱ)令 有
① 當即時
(-1,0) |
0 |
(0,) |
(,1) |
||
+ |
0 |
- |
0 |
+ |
|
極大值 |
極小值 |
故的極大值是,極小值是
② 當即時,在(-1,0)上遞增,在(0,1)上遞減,則的極大值為,無極小值。
綜上所述 時,極大值為,無極小值
時 極大值是,極小值是 ----------8分
(Ⅲ)設,
對求導,得
∵,
∴ 在區(qū)間上為增函數(shù),則
依題意,只需,即
解得 或(舍去)
則正實數(shù)的取值范圍是(,)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com