科目: 來(lái)源: 題型:解答題
對(duì)于函數(shù)f(x)若存在x0∈R,f(x0)=x0成立,則稱(chēng)x0為f(x)的不動(dòng)點(diǎn).已知f(x)=ax2+(b+1)x+b-1(a≠0).
(1)當(dāng)a=1,b=-2時(shí),求函數(shù)f(x)的不動(dòng)點(diǎn);
(2)若對(duì)任意實(shí)數(shù)b,函數(shù)f(x)恒有兩個(gè)相異的不動(dòng)點(diǎn),求a的取值范圍;
(3)在(2)的條件下,若y=f(x)圖象上A,B兩點(diǎn)的橫坐標(biāo)是函數(shù)f(x)的不動(dòng)點(diǎn),且A,B兩點(diǎn)關(guān)于直線(xiàn)y=kx+對(duì)稱(chēng),求b的最小值.
查看答案和解析>>
科目: 來(lái)源: 題型:解答題
已知函數(shù)f(x)的圖象與函數(shù)h(x)=x++2的圖象關(guān)于點(diǎn)A(0,1)對(duì)稱(chēng).
(1)求函數(shù)f(x)的解析式;
(2)若g(x)=f(x)+,g(x)在區(qū)間(0,2]上的值不小于6,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目: 來(lái)源: 題型:解答題
已知函數(shù)f(x)=xm-且f(4)=.
(1)求m的值;
(2)判定f(x)的奇偶性;
(3)判斷f(x)在(0,+∞)上的單調(diào)性,并給予證明.
查看答案和解析>>
科目: 來(lái)源: 題型:解答題
甲同學(xué)家到乙同學(xué)家的途中有一公園,甲從家到公園的距離與乙從家到公園的距離都是2 km,甲10時(shí)出發(fā)前往乙家.如圖所示,表示甲從家出發(fā)到達(dá)乙家為止經(jīng)過(guò)的路程y(km)與時(shí)間x(分)的關(guān)系.試寫(xiě)出y=f(x)的函數(shù)解析式.
查看答案和解析>>
科目: 來(lái)源: 題型:解答題
設(shè)(是自然對(duì)數(shù)的底數(shù),),且.
(1)求實(shí)數(shù)的值,并求函數(shù)的單調(diào)區(qū)間;
(2)設(shè),對(duì)任意,恒有成立.求實(shí)數(shù)的取值范圍;
(3)若正實(shí)數(shù)滿(mǎn)足,,試證明:;并進(jìn)一步判斷:當(dāng)正實(shí)數(shù)滿(mǎn)足,且是互不相等的實(shí)數(shù)時(shí),不等式是否仍然成立.
查看答案和解析>>
科目: 來(lái)源: 題型:解答題
已知二次函數(shù),不等式的解集為.
(1)求的解析式;
(2)若函數(shù)在上單調(diào),求實(shí)數(shù)的取值范圍;
(3)若對(duì)于任意的x∈[-2,2],都成立,求實(shí)數(shù)n的最大值.
查看答案和解析>>
科目: 來(lái)源: 題型:解答題
已知函數(shù)滿(mǎn)足對(duì)任意的恒有,且當(dāng)時(shí),.
(1)求的值;
(2)判斷的單調(diào)性
(3)若,解不等式.
查看答案和解析>>
科目: 來(lái)源: 題型:解答題
某村莊擬修建一個(gè)無(wú)蓋的圓柱形蓄水池(不計(jì)厚度).設(shè)該蓄水池的底面半徑為米,高為米,體積為立方米.假設(shè)建造成本僅與表面積有關(guān),側(cè)面積的建造成本為100元/平方米,底面的建造成本為160元/平方米,該蓄水池的總建造成本為元(為圓周率).
(1)將表示成的函數(shù),并求該函數(shù)的定義域;
(2)討論函數(shù)的單調(diào)性,并確定和為何值時(shí)該蓄水池的體積最大.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com