相關習題
 0  172524  172532  172538  172542  172548  172550  172554  172560  172562  172568  172574  172578  172580  172584  172590  172592  172598  172602  172604  172608  172610  172614  172616  172618  172619  172620  172622  172623  172624  172626  172628  172632  172634  172638  172640  172644  172650  172652  172658  172662  172664  172668  172674  172680  172682  172688  172692  172694  172700  172704  172710  172718  266669 

科目: 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練優(yōu)化重組卷5練習卷(解析版) 題型:選擇題

已知拋物線y28x的準線與雙曲線y21(m>0)交于A,B兩點,點F為拋物線的焦點,若FAB為直角三角形,則雙曲線的離心率是(  )

A. B. C2 D2

 

查看答案和解析>>

科目: 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練優(yōu)化重組卷5練習卷(解析版) 題型:選擇題

已知點P(x,y)是直線kxy40(k>0)上一動點,PA,PB是圓Cx2y22y0的兩條切線,A,B為切點,若四邊形PACB的最小面積是2,則k的值為(  )

A4 B3 C2 D.

 

查看答案和解析>>

科目: 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練優(yōu)化重組卷5練習卷(解析版) 題型:填空題

已知雙曲線1(a>0b>0)的漸近線方程為y±x,則它的離心率為________

 

查看答案和解析>>

科目: 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練優(yōu)化重組卷5練習卷(解析版) 題型:填空題

已知直線ya交拋物線yx2A,B兩點.若該拋物線上存在點C,使得ACB為直角,則a的取值范圍為________

 

查看答案和解析>>

科目: 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練優(yōu)化重組卷5練習卷(解析版) 題型:填空題

設圓x2y22的切線lx軸正半軸、y軸正半軸分別交于點AB,當|AB|取最小值時,切線l的方程為________

 

查看答案和解析>>

科目: 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練優(yōu)化重組卷5練習卷(解析版) 題型:填空題

設圓C的圓心與雙曲線1(a>0)的右焦點重合,且該圓與此雙曲線的漸近線相切,若直線lxy0被圓C截得的弦長等于2,則a的值為________

 

查看答案和解析>>

科目: 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練優(yōu)化重組卷5練習卷(解析版) 題型:解答題

已知中心在坐標原點O的橢圓C經(jīng)過點A(2,3),且點F(2,0)為其右焦點.

(1)求橢圓C的方程;

(2)是否存在平行于OA的直線l,使得直線l與橢圓C有公共點,且直線OAl的距離等于4?若存在,求出直線l的方程;若不存在,請說明理由.

 

查看答案和解析>>

科目: 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練優(yōu)化重組卷5練習卷(解析版) 題型:解答題

設直線lxym0與拋物線Cy24x交于不同兩點A,BF 為拋物線的焦點.

(1)ABF的重心G的軌跡方程;

(2)如果m=-2,求ABF的外接圓的方程.

 

查看答案和解析>>

科目: 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練優(yōu)化重組卷5練習卷(解析版) 題型:解答題

如圖,在平面直角坐標系xOy中,橢圓C1(a>b>0)的離心率為,以坐標原點為圓心,橢圓C的短半軸長為半徑的圓與直線xy20相切.

(1)求橢圓C的方程;

(2)已知點P(0,1),Q(0,2),設M,N是橢圓C上關于y軸對稱的不同兩點,直線PMQN相交于點T.求證:點T在橢圓C上.

 

查看答案和解析>>

科目: 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練優(yōu)化重組卷5練習卷(解析版) 題型:解答題

已知直線lyx,圓Ox2y25,橢圓E1(a>b>0)的離心率e,直線l被圓O截得的弦長與橢圓的短軸長相等.

(1)求橢圓E的方程;

(2)過圓O上任意一點P作橢圓E的兩條切線,若切線都存在斜率,求證:兩條切線的斜率之積為定值.

 

查看答案和解析>>

同步練習冊答案