相關(guān)習(xí)題
 0  199953  199961  199967  199971  199977  199979  199983  199989  199991  199997  200003  200007  200009  200013  200019  200021  200027  200031  200033  200037  200039  200043  200045  200047  200048  200049  200051  200052  200053  200055  200057  200061  200063  200067  200069  200073  200079  200081  200087  200091  200093  200097  200103  200109  200111  200117  200121  200123  200129  200133  200139  200147  266669 

科目: 來源: 題型:

如圖,PD⊥平面ABCD,AD⊥PC,AD∥BC,PD:DC:BC=1:1:
2
.求:
(1)直線PB與與平面ABCD所成角的大。
(2)直線PB與平面PDC所成角的大。
(3)直線PC與平面PBD所成角的大。

查看答案和解析>>

科目: 來源: 題型:

證明sin(α+β)sin(α-β)=sin2α-sin2β,并利用該式計算sin220°+sin80°•sin40°的值.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=x2+mx+n滿足對任意x∈R,有f(x-
a
2
)=f(-x-
a
2
)成立,并且圖象經(jīng)過點(0,2a-1)(其中a為常數(shù)).
(1)試用a表示m、n;
(2)當(dāng)a<0時,g(x)=
f(lnx)
lnx+1
在[e,e2]上有最小值a-1,求實數(shù)a的值;
(3)當(dāng)a=-2時,對任意的x1∈[e,e2],存在x2∈[-
π
6
3
]使得不等式f(lnx1)-(4λ-1)(1+lnx1)sinx2≥0成立,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

證明:
1+cscα+cotα
1+cscα-cotα
=cscα+cotα.

查看答案和解析>>

科目: 來源: 題型:

證明:
3-4cos2A+cos4A
3+4cos2A+cos4A
=tan4A.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=
1
2
sin2x•sinφ+cos2x•cosφ+
1
2
sin(
3
2
π-φ)(0<φ<π),其圖象過點(
π
6
,
1
2
.)
(Ⅰ)求函數(shù)f(x)在[0,π]上的單調(diào)遞減區(qū)間;
(Ⅱ)若x0∈(
π
2
,π),sinx0=
3
5
,求f(x0)的值.

查看答案和解析>>

科目: 來源: 題型:

已知
a
=(
3
2
,cos2x),
b
=(sin2x,
1
2
)函數(shù)f(x)=
a
b
+
3
2

(1)求函數(shù)f(x)的最小正周期和單調(diào)增區(qū)間;
(2)函數(shù)f(x)的圖象可以由函數(shù)y=sin2x(x∈R)的圖象經(jīng)過怎樣的變換得到?

查看答案和解析>>

科目: 來源: 題型:

已知f(x)=
3
sinxcosx+3sin2x-
3
2

(1)求f(x)的最小正周期及f(
π
12
);
(2)求y=f(x)的單調(diào)增區(qū)間;
(3)當(dāng)x∈[
π
3
,
6
]時,求y=f(x)的值域.

查看答案和解析>>

科目: 來源: 題型:

函數(shù)f(x)=cos(2x-
π
3
)+2sin(x-
π
4
)sin(x+
π
4
)圖象的對稱軸方程是
 

查看答案和解析>>

科目: 來源: 題型:

函數(shù)f(x)=cos
x
2
(
3
sin
x
2
+cos
x
2
)
的在下列哪個區(qū)間上單調(diào)遞增(  )
A、(
π
3
,
3
)
B、(-
π
6
π
2
)
C、(0,
π
2
)
D、(-
3
,0)

查看答案和解析>>

同步練習(xí)冊答案