相關(guān)習(xí)題
 0  200189  200197  200203  200207  200213  200215  200219  200225  200227  200233  200239  200243  200245  200249  200255  200257  200263  200267  200269  200273  200275  200279  200281  200283  200284  200285  200287  200288  200289  200291  200293  200297  200299  200303  200305  200309  200315  200317  200323  200327  200329  200333  200339  200345  200347  200353  200357  200359  200365  200369  200375  200383  266669 

科目: 來源: 題型:

已知四棱錐P-ABCD,側(cè)面PAD⊥底面ABCD,側(cè)面PAD為等邊三角形,底面ABCD為棱形且∠DAB=
π
3

(Ⅰ)求證:PB⊥AD;
(Ⅱ)求平面PAB與平面PCD所成的角(銳角)的余弦值.

查看答案和解析>>

科目: 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD為菱形,∠BAD=60°,Q為AD的中點(diǎn),PA=PD=AD=2.
(1)求證:AD⊥平面PQB;
(2)若PM=
1
3
PC,平面PAD⊥平面ABCD,求二面角M-BQ-C的大小.

查看答案和解析>>

科目: 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,點(diǎn)E為棱PC的中點(diǎn).
(Ⅰ)證明:BE⊥DC;
(Ⅱ)求BE的長;
(Ⅲ)若F為棱PC上一點(diǎn),滿足BF⊥AC,求二面角F-AB-P的余弦值.

查看答案和解析>>

科目: 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是以AC為直徑的圓的內(nèi)接四邊形,AC⊥BD,F(xiàn)是PC的中點(diǎn),∠BAC=60°,PD⊥平面ABC.
(1)求證:BF⊥CD;
(2)若平面PAB與平面PCD的夾角為45°,AC=2,求PD的長.

查看答案和解析>>

科目: 來源: 題型:

四棱錐P-ABCD中,ABCD為直角梯形,AD∥BC,∠ABC=90°,PA⊥面ABCD,PA=3,AD=2,AB=2
3
,BC=6.
(1)求證:BD⊥平面PAC;
(2)求二面角P-BD-A大;
(3)求二面角B-PC-A大小.

查看答案和解析>>

科目: 來源: 題型:

如圖,直三棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點(diǎn),AA1=AC=CB=
2
2
AB.
(Ⅰ)證明:BC1∥平面A1CD
(Ⅱ)求二面角D-A1C-E的正弦值.

查看答案和解析>>

科目: 來源: 題型:

已知數(shù)列{xn}滿足x1=
1
2
,且xn+1=
xn
2-xn
,(n∈N+
(1)用數(shù)學(xué)歸納證明:0<xn<1
(2)設(shè)an=
1
xn
,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目: 來源: 題型:

已知x,y,z∈R,且x-2y+2z=5,則(x+5)2+(y-1)2+(z+3)2的最小值是
 

查看答案和解析>>

科目: 來源: 題型:

利用柯西不等式證明平方平均不等式.
設(shè)a1、a2、…,an∈R+,則
a1+a2+…+an
n
a12+a22+…+an2
n

查看答案和解析>>

科目: 來源: 題型:

在空間直角坐標(biāo)系O-xyz中,坐標(biāo)原點(diǎn)為O,P點(diǎn)坐標(biāo)為(x,y,z).
(Ⅰ)若點(diǎn)P在x軸上,且坐標(biāo)滿足|2x-5|≤3,求點(diǎn)P到原點(diǎn)O的距離的最小值;
(Ⅱ)若點(diǎn)P到坐標(biāo)原點(diǎn)O的距離為2
3
,求x+y+z的最大值.

查看答案和解析>>

同步練習(xí)冊答案