相關(guān)習(xí)題
 0  201424  201432  201438  201442  201448  201450  201454  201460  201462  201468  201474  201478  201480  201484  201490  201492  201498  201502  201504  201508  201510  201514  201516  201518  201519  201520  201522  201523  201524  201526  201528  201532  201534  201538  201540  201544  201550  201552  201558  201562  201564  201568  201574  201580  201582  201588  201592  201594  201600  201604  201610  201618  266669 

科目: 來(lái)源: 題型:

等差數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列{bn}是等比數(shù)列,滿足a1=2,b1=1,b2+S2=8,a5-2b2=a3
(Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(Ⅱ)令cn=
an,n為奇數(shù)
bn,n為偶數(shù)
,設(shè)數(shù)列{cn}前n項(xiàng)和為T(mén)n,求T2n

查看答案和解析>>

科目: 來(lái)源: 題型:

如圖,已知?ABCD的兩條對(duì)角線AC與BD交于E,O是任意一點(diǎn).
求證:
OA
+
OB
+
OC
+
OD
=4
OE

查看答案和解析>>

科目: 來(lái)源: 題型:

如圖,正方體ABCD-A1B1C1D1中,M是棱BC的中點(diǎn),則異面直線C1M與AA1所成角的余弦值為
 

查看答案和解析>>

科目: 來(lái)源: 題型:

a
=(2x,1,3),
b
=(1,3,9),如果
a
b
為共線向量,則( 。
A、x=1
B、x=
1
2
C、x=
1
6
D、x=-
1
6

查看答案和解析>>

科目: 來(lái)源: 題型:

已知:f(x)=
x2+ax+b
x
,x∈(0,+∞)
(1)若b≥1,求證:函數(shù)f(x)在(0,1)上是減函數(shù);
(2)是否存在實(shí)數(shù)a,b,使f(x)同時(shí)滿足下列二個(gè)條件:
①在(0,1)上是減函數(shù),(1,+∞)上是增函數(shù);
②f(x)的最小值是3,若存在,求出a,b的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源: 題型:

設(shè)數(shù)列{an}是各項(xiàng)均為正數(shù)的等比數(shù)列,其前n項(xiàng)和為Sn,若a1a5=64,S5-S3=48.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)對(duì)于正整數(shù)k,m,l(k<m<l),求證:“m=k+1且l=k+3”是“5ak,am,al這三項(xiàng)經(jīng)適當(dāng)排序后能構(gòu)成等差數(shù)列”成立的充要條件;
(3)設(shè)數(shù)列{bn}滿足:對(duì)任意的正整數(shù)n,都有a1bn+a2bn-1+a3bn-2+…+anb1=3•2n+1-4n-6,且集合M={n|
bn
an
≥λ,n∈N*}
中有且僅有3個(gè)元素,試求λ的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知函數(shù)f(x)=lnx,g(x)=ex
(Ⅰ)求函數(shù)y=f(x)-x的單調(diào)區(qū)間;
(Ⅱ)若不等式g(x)<
x-m
x
在(0.+∞)上有解,求實(shí)數(shù)m的取值范圍;
(Ⅲ)證明:函數(shù)y=f(x)和y=g(x)在公共定義域內(nèi),g(x)-f(x)>2.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知平行四邊形ABCD,點(diǎn)M1,M2,M3,…,Mn-1和N1,N2,N3,…,Nn-1分別將線段BC和DC,n等分(n∈N*,n≥2),如圖,若
AM1
+
AM2
+…+
AMn-1
+
AN1
+
AN2
+…+
ANn-1
=45
AC
,則n=( 。
A、29B、30C、31D、32

查看答案和解析>>

科目: 來(lái)源: 題型:

若Sn是公差不為0,首項(xiàng)為1的等差數(shù)列{an}的前n項(xiàng)和,且S1,S2,S4成等比數(shù)列.
(1)求{an}的通項(xiàng)公式;
(2)求數(shù)列前十項(xiàng)和S10

查看答案和解析>>

科目: 來(lái)源: 題型:

△ABC中,cosB為sinA,sinC的等比中項(xiàng),sinB為cosA,cosC的等差中項(xiàng),則∠B等于
 

查看答案和解析>>

同步練習(xí)冊(cè)答案