相關習題
 0  208493  208501  208507  208511  208517  208519  208523  208529  208531  208537  208543  208547  208549  208553  208559  208561  208567  208571  208573  208577  208579  208583  208585  208587  208588  208589  208591  208592  208593  208595  208597  208601  208603  208607  208609  208613  208619  208621  208627  208631  208633  208637  208643  208649  208651  208657  208661  208663  208669  208673  208679  208687  266669 

科目: 來源: 題型:

已知z=1-i,w=(2-i)
.
z
-2
(Ⅰ)求|w|;
(Ⅱ)如果aw-b=
2i
z
(a,b∈R),求2a+b的值.

查看答案和解析>>

科目: 來源: 題型:

求證:
32
-
3
是無理數(shù).

查看答案和解析>>

科目: 來源: 題型:

在直角坐標系xOy中,曲線C1的參數(shù)方程為:
x=
3
cosθ
y=2sinθ
(θ為參數(shù)),以直角坐標系xOy的原點O為極點,x軸的正半軸為極軸,取相同的單位長度建立極坐標系,已知直線l:ρ(2cosθ-sinθ)=6.
(Ⅰ)試寫出直線l的直角坐標方程和曲線C1的普通方程;
(Ⅱ)在曲線C1上求一點P,使點P到直線l的距離最大,并求出此最大值.

查看答案和解析>>

科目: 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點.
(1)求證:PD⊥面ABE;
(2)在線段PD上是否存在點F,使CF∥面PAB?若存在,指出點F的位置,并證明;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=
a
x
+lnx-1,a∈R
(1)若曲線y=f(x)在點P(1,y0)處的切線平行于直線y=-x+1,求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)若函數(shù)y=f(x+
1
2
)在x∈[0,e]上有兩個零點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知三角形的一邊是另一邊的兩倍,求證:它的最小邊在它的周長的
1
6
1
4
之間.

查看答案和解析>>

科目: 來源: 題型:

已知Sn是等差數(shù)列{an}的前n項和,且a1=-1,S5=15.
(1)求an;
(2)令bn=2 an(n=1,2,3,…),計算b1,b2和b3,由此推測數(shù)列{bn}是等差數(shù)列還是等比數(shù)列,證明你的結(jié)論.

查看答案和解析>>

科目: 來源: 題型:

在各項均為正數(shù)的等比數(shù)列{an}中,已知a2=2,a5=16,求:
(1)a1與公比q的值;
(2)數(shù)列前6項的和S6

查看答案和解析>>

科目: 來源: 題型:

某種產(chǎn)品的質(zhì)量以其質(zhì)量指標值衡量,質(zhì)量指標值越大表明質(zhì)量越好,且質(zhì)量指標值大于或等于102的產(chǎn)品為優(yōu)質(zhì)產(chǎn)品,現(xiàn)用兩種新配方(分別稱為A份配方和B份配方)做試驗,各生產(chǎn)了100件這種產(chǎn)品,并測量了每件產(chǎn)品的質(zhì)量指標值,得到下面試驗結(jié)果:
A份配方的質(zhì)量指標值頻數(shù)分布統(tǒng)計表
指標值分組〔90,94)〔90,98)〔98,102)〔102,106)〔106,110)
頻數(shù)8b42a8
B份配方的質(zhì)量指標值頻數(shù)分布統(tǒng)計表
指標值分組〔90,94)〔90,98)〔98,102)〔102,106)〔106,110)
頻數(shù)412423210
(1)若(90,98)的頻率是0.2,求a、b的值;
(2)依據(jù)估計用A份配方生產(chǎn)的產(chǎn)品的優(yōu)質(zhì)品率;
(3)作出B配方抽取的100件產(chǎn)品的頻率分布直方圖.

查看答案和解析>>

科目: 來源: 題型:

在海南省第二十四屆科技創(chuàng)新大賽活動中,某同學為研究“網(wǎng)絡游戲?qū)Ξ敶嗌倌甑挠绊憽弊髁艘淮握{(diào)查,共調(diào)查了50名同學,其中男生26人,有8人不喜歡玩電腦游戲,而調(diào)查的女生中有9人喜歡玩電腦游戲.
(1)根據(jù)以上數(shù)據(jù)建立一個2×2的列聯(lián)表;
(2)根據(jù)以上數(shù)據(jù),在犯錯誤的概率不超過0.025的前提下,能否認為“喜歡玩電腦游戲與性別有關系”?
P(K2≥k)0.1000.0500.0250.0100.001
k2.7063.8415.0246.63510.828

查看答案和解析>>

同步練習冊答案