相關習題
 0  208564  208572  208578  208582  208588  208590  208594  208600  208602  208608  208614  208618  208620  208624  208630  208632  208638  208642  208644  208648  208650  208654  208656  208658  208659  208660  208662  208663  208664  208666  208668  208672  208674  208678  208680  208684  208690  208692  208698  208702  208704  208708  208714  208720  208722  208728  208732  208734  208740  208744  208750  208758  266669 

科目: 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)離心率為
1
2
,短軸長為2,直線l:y=x+m,
(1)求橢圓的標準方程;
(2)當直線l與橢圓有公共點時,求實數(shù)m的取值范圍;
(3)若直線l過橢圓右焦點,并與橢圓交于A、B兩點,求弦AB之長.

查看答案和解析>>

科目: 來源: 題型:

如圖:在幾何體ABCD-B1C1D1中,四邊形ABCD為菱形,∠BAD=60°,AB=a,平面B1C1D1∥平面ABCD,且BB1、CC1、DD1均垂直于平面ABCD,BB1=
2
a,E、F分別為AB、CC1的中點.
(1)證明:DF是異面直線DE與B1F的公垂線;
(2)求二面角E-DF-B1的平面角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

某水庫進入汛期后的水位升高量h(n)(單位:標高)與進入訊期的天數(shù)n的關系是h(n)=20
5m2+6n
,汛期共計40天,剛進入汛期時水庫水位為220(標高),而水庫警戒線水位是400(標高),水庫共有水閘15個,每開啟一個泄洪,一天可使水庫的水位下降4(標高).
(1)若不開啟水閘泄洪,這個汛期水庫是否有危險?若有危險,將發(fā)生在第幾天?
(2)若要保證水庫安全,則在進入訊期的第一天起每天開啟p個水閘泄洪,求p的最小值.
(參考數(shù)據(jù):2.272≈5.15,2.312≈5.34)

查看答案和解析>>

科目: 來源: 題型:

設橢圓M:
x2
a2
+
y2
2
=1(a>2)的右焦點為F1,直線l:x=
a2
a2-2
與x軸交于點A,若
OF1
=2
F1A
(其中O為坐標原點).
(1)求橢圓M的方程;
(2)設P是橢圓M上的任意一點,EF為圓N:x2+(y-2)2=1的任意一條直徑(E、F為直徑的兩個端點),求
PE
PF
的最大值.

查看答案和解析>>

科目: 來源: 題型:

已知
a
=(1,1),
b
=(1,-1),將向量
c
=(2,3)表示成x
a
+y
b
的形式.

查看答案和解析>>

科目: 來源: 題型:

如圖,圓內接四邊形ABCD的對角線BD上有一點E,滿足∠BAE=∠CAD.
(Ⅰ)求證:△AEB∽△ACD,△AED∽△ABC;
(Ⅱ)若AB=5,BC=5,CD=3,DA=5.5,AC=6.5,求BD的長.

查看答案和解析>>

科目: 來源: 題型:

已知角A,B為銳角,且滿足:sin2(A+B)=sin2A+sin2B.
(Ⅰ)求sinA+sinB的取值范圍;
(Ⅱ)以A,B為內角構造△ABC,角A,B,C所對的邊為a,b,c,若c=2,求
a2+2b2
a2b2
的最小值.

查看答案和解析>>

科目: 來源: 題型:

若拋物線y2=4x的焦點與橢圓的右焦點重合,橢圓與軸的上半軸交于點B2,與軸的右半軸交于點A2,橢圓的左、右焦點為F1、F2,且3|
F1B2
|cos∠B2F1F2=
3
|
OB2
|
(1)求橢圓的標準方程;
(2)過點D(0,2)的直線,斜率為k(k>0),與橢圓交于M,N兩點.
(i)若M,N的中點為H,且存在非零實數(shù),使得
OH
A2B2
,求出斜率k的值;
(ii)在軸上是否存在點Q(m,0),使得以QM,QN為鄰邊的四邊形是個菱形?若存在求出m的范圍,若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

如圖所示,在△ABC中,點M是BC的中點,設
AB
=
a
,
AC
=
b
,點N在AC上,且AN=2NC,AM與BN相交于點P,AP=λAM,求
(1)λ的值;
(2)用
a
,
b
表示
AP

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=2
3
sinxcosx+2cos2x-1,求函數(shù)的最大值和最小正周期T,并求當x取何值時達到最大值.

查看答案和解析>>

同步練習冊答案