相關(guān)習(xí)題
 0  208807  208815  208821  208825  208831  208833  208837  208843  208845  208851  208857  208861  208863  208867  208873  208875  208881  208885  208887  208891  208893  208897  208899  208901  208902  208903  208905  208906  208907  208909  208911  208915  208917  208921  208923  208927  208933  208935  208941  208945  208947  208951  208957  208963  208965  208971  208975  208977  208983  208987  208993  209001  266669 

科目: 來源: 題型:

已知A(-2,0),B(2,0)為橢圓C的左、右頂點,F(xiàn)為其右焦點,P是橢圓C上異于A,B的動點,且△APB面積的最大值為2
3

(I)求橢圓C的方程及離心率;
(Ⅱ)直線AP與橢圓在點B處的切線交于點D,試證明:無論直線AP繞點A如何轉(zhuǎn)動,以BD為直徑的圓總與直線PF相切.

查看答案和解析>>

科目: 來源: 題型:

設(shè)點A,B是圓x2+y2=4上的兩點,點C(1,0),如果∠ACB=90°,則線段AB長度的最大值為
 

查看答案和解析>>

科目: 來源: 題型:

省少年籃球隊要從甲、乙兩所體校選拔隊員.現(xiàn)將這兩所體校共20名學(xué)生的身高繪制成如下莖葉圖(單位:cm):若身高在180cm以上(包括180cm)定義為“高個子”,身高在180cm以下(不包括180cm)定義為“非高個子”.
(Ⅰ)用分層抽樣的方法從“高個子”和“非高個子”中抽取5人,如果從這5人中隨機選2人,那么至少有一人是“高個子”的概率是多少?
(Ⅱ)若從所有“高個子”中隨機選3名隊員,用ξ表示乙校中選出的“高個子”人數(shù),試求出ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源: 題型:

已知tan(
π
4
+α)=
1
2

(Ⅰ)求tanα的值;
(Ⅱ)求
sin(2α+2π)-sin2(
π
2
-α)
1-cos(π-2α)+sin2α
的值.

查看答案和解析>>

科目: 來源: 題型:

某城市隨機抽取一個月(30天)的空氣質(zhì)量指數(shù)API監(jiān)測數(shù)據(jù),統(tǒng)計結(jié)果如下:
API[0,50](50,100](100,150](150,200](200,250](250,300](300,350]
空氣質(zhì)量優(yōu)輕微污染輕度污染中度污染中度重污染重度污染
天數(shù)2459433
(Ⅰ)根據(jù)以上數(shù)據(jù)估計該城市這30天空氣質(zhì)量指數(shù)API的平均值;
(Ⅱ)若該城市某企業(yè)因空氣污染每天造成的經(jīng)濟損失S(單位:元)與空氣質(zhì)量指數(shù)API(記為w)的關(guān)系式為:
S=
0,0≤w≤100
4w-400,100<w≤300
2000,300<w≤350

若在本月30天中隨機抽取一天,試估計該天經(jīng)濟損失S大于200元且不超過600元的概率.

查看答案和解析>>

科目: 來源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,點D是AB的中點,
(1)求證:AC⊥BC1;
(2)求證:AC1∥平面CDB1;
(3)試在線段A1B1上找一點M,使得平面AC1M∥平面CDB1

查看答案和解析>>

科目: 來源: 題型:

已知兩圓C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直線l:x+2y=0,求經(jīng)過圓C1、C2的交點且和直線l相切的圓的方程.

查看答案和解析>>

科目: 來源: 題型:

已知平面上三個向量
a
、
b
、
c
,其中
a
=(1,2).
(1)若|
c
|=2
5
,且
c
a
,求
c
的坐標;
(2)若|
b
|=
5
2
,且
a
+2
b
與2
a
-
b
垂直,求
a
b
的夾角θ的余弦值.

查看答案和解析>>

科目: 來源: 題型:

已知,如圖,AB是圓O的直徑,AC切⊙O于點A,AC=AB,CO交⊙O于點P,CO的延長線交⊙O于點F,BP的延長線交AC于點E.
(Ⅰ)求證:FA∥BE:;
(Ⅱ)求證:
AP
PC
=
FA
AB
;
(Ⅲ)若⊙O的直徑AB=2,求tan∠CPE的值.

查看答案和解析>>

科目: 來源: 題型:

已知|
a
|=4,|
b
|=2,且
a
b
夾角為120°求:
(1)(
a
-2
b
)•(
a
+
b
);
(2)
a
a
+
b
的夾角.

查看答案和解析>>

同步練習(xí)冊答案