相關(guān)習(xí)題
 0  209662  209670  209676  209680  209686  209688  209692  209698  209700  209706  209712  209716  209718  209722  209728  209730  209736  209740  209742  209746  209748  209752  209754  209756  209757  209758  209760  209761  209762  209764  209766  209770  209772  209776  209778  209782  209788  209790  209796  209800  209802  209806  209812  209818  209820  209826  209830  209832  209838  209842  209848  209856  266669 

科目: 來(lái)源: 題型:

已知函數(shù)g(x)=alnx,f(x)=x3+x2+bx.
(1)若f(x)在區(qū)間[1,2]上不是單調(diào)函數(shù),求實(shí)數(shù)b的范圍;
(2)若對(duì)任意x∈[1,e],都有g(shù)(x)≥-x2+(a+2)x恒成立,求實(shí)數(shù)a的取值范圍;
(3)當(dāng)b=0時(shí),設(shè)F(x)=
f(-x),x<1
g(x),x≥1
,對(duì)任意給定的正實(shí)數(shù)a,曲線(xiàn)y=F(x)上是否存在兩點(diǎn)P,Q,使得△POQ是以O(shè)(O為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,而且此三角形斜邊中點(diǎn)在y軸上?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知函數(shù)f(x)=
2
sin(x-
π
12
),x∈R
(Ⅰ)直接寫(xiě)出f(x)的最大值及對(duì)應(yīng)的x的集合;
(Ⅱ)若sinθ=-
4
5
,θ∈(
2
,2π),求f(2θ+
π
3
).

查看答案和解析>>

科目: 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)過(guò)點(diǎn)(2,0),且橢圓C的離心率為
1
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)若動(dòng)點(diǎn)P在直線(xiàn)x=-1上,過(guò)P作直線(xiàn)交橢圓C于M,N兩點(diǎn),且P為線(xiàn)段MN中點(diǎn),再過(guò)P:作直線(xiàn)l⊥MN.求直線(xiàn)l是否恒過(guò)定點(diǎn),如果是則求出該定點(diǎn)的坐標(biāo),不是請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
2

(1)證明:a2=4b2;
(2)若雙曲線(xiàn)x2-y2=1的漸近線(xiàn)與橢圓C有四個(gè)交點(diǎn),以這四個(gè)交點(diǎn)為頂點(diǎn)的四邊形的面積為16,求橢圓C的方程.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知函數(shù)f(x)=
1+ln(x+1)
x
(x>0).
(Ⅰ)試判斷函數(shù)f(x)在(0,+∞)上單調(diào)性并證明你的結(jié)論;
(Ⅱ)若f(x)>
k
x+1
?x∈(0,+∞)恒成立,求正整數(shù)k的最大值.

查看答案和解析>>

科目: 來(lái)源: 題型:

在△ABC中,AB=2,AC=3,∠A=60°,P是三角形的內(nèi)心,求
AP
BC

查看答案和解析>>

科目: 來(lái)源: 題型:

在△ABC中,三個(gè)內(nèi)角A、B、C的對(duì)邊分別為a、b、c,且A、B、C成等差數(shù)列,
(Ⅰ)求B的值;
(Ⅱ)若a、b、c成等比數(shù)列,求證:△ABC為等邊三角形.

查看答案和解析>>

科目: 來(lái)源: 題型:

如圖:ABCD是平行四邊形,AP⊥平面ABCD,BE∥AP,AB=AP=2,BE=BC=1,∠CBA=60°
(1)求證:EC∥平面PAD;
(2)求證:平面PAC⊥平面EBC;
(3)求直線(xiàn)PC與平面PABE所成角的正弦值.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知函數(shù)f(x)=log2(x+a).
(1)若0<f(1-2x)-f(x)<
1
2
,當(dāng)a=1時(shí),求x的取值范圍;
(2)若定義在R上奇函數(shù)g(x)滿(mǎn)足g(x+2)=-g(x),且當(dāng)0≤x≤1時(shí),g(x)=f(x),求g(x)在[-3,-1]上的反函數(shù)h(x);
(3)對(duì)于(2)中的g(x),若關(guān)于x的不等式g(
t-2 x
8+2 x+3
)≥1-log23在R上恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

(文科)解關(guān)于x的不等式x2-ax-6a2<0.

查看答案和解析>>

同步練習(xí)冊(cè)答案