相關(guān)習(xí)題
 0  212745  212753  212759  212763  212769  212771  212775  212781  212783  212789  212795  212799  212801  212805  212811  212813  212819  212823  212825  212829  212831  212835  212837  212839  212840  212841  212843  212844  212845  212847  212849  212853  212855  212859  212861  212865  212871  212873  212879  212883  212885  212889  212895  212901  212903  212909  212913  212915  212921  212925  212931  212939  266669 

科目: 來源: 題型:

若f(x+1)是奇函數(shù),證明:f(-x+1)=-f(x+1).

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=ax2+
1
bx
+c(a,b∈N)是奇函數(shù),且f(1)=2,f(2)<3.
(1)求函數(shù)解析式;
(2)判斷證明f(x)在[1,+∞)上的單調(diào)性.

查看答案和解析>>

科目: 來源: 題型:

已知f(x)=cos(x+2θ)+sin(x-2θ)是奇函數(shù),求θ的值.

查看答案和解析>>

科目: 來源: 題型:

設(shè)ξ為隨機(jī)變量,從棱長為1的正方體ABCD-A1B1C1D1的八個(gè)頂點(diǎn)中任取四個(gè)點(diǎn),當(dāng)四點(diǎn)共面時(shí),ξ=0,當(dāng)四點(diǎn)不共面時(shí),ξ的值為四點(diǎn)組成的四面體的體積.
(1)求概率P(ξ=0);
(2)求ξ的分布列,并求其數(shù)學(xué)期望E(ξ).

查看答案和解析>>

科目: 來源: 題型:

判斷下列函數(shù)的奇偶性:
(1)f(x)=
1-x2
|x+2|-2
;
(2)f(x)=(
1
2x-1
+
1
2
)•x

(3)f(x)=lg(
x2+1
-x

查看答案和解析>>

科目: 來源: 題型:

市教育局組織全市中小學(xué)的“特色社團(tuán)”評(píng)比活動(dòng).某高中從本校的三個(gè)校級(jí)優(yōu)秀社團(tuán)中選出9人組成代表隊(duì)參加全市的比賽,代表隊(duì)成員的構(gòu)成情況如表:
社團(tuán)名稱 心靈花語社 豆蔻文學(xué)社 科技創(chuàng)新設(shè)
人數(shù) 4 2 3
(Ⅰ)學(xué)校領(lǐng)導(dǎo)為了檢查這9名同學(xué)的準(zhǔn)備情況,從中隨機(jī)選出2名同學(xué)讓其介紹其所在社團(tuán)的主要特色,求這2名同學(xué)來自不同社團(tuán)的概率;
(Ⅱ)在這次全市中小學(xué)的“特色社團(tuán)”評(píng)比活動(dòng)中,該高中代表隊(duì)獲得了團(tuán)隊(duì)優(yōu)秀成績,并且有2名同學(xué)獲得了“社團(tuán)之星”榮譽(yù)稱號(hào),設(shè)代表隊(duì)中心靈花語社成員獲得“社團(tuán)之星”榮譽(yù)稱號(hào)的人數(shù)為ξ,求隨機(jī)變量ξ的分布列及期望Eξ.

查看答案和解析>>

科目: 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且滿足Sn=n-an(n∈N*)
(Ⅰ)求證:數(shù)列{an-1}是等比數(shù)列;
(Ⅱ)設(shè)bn=(2-n)(an-1),求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目: 來源: 題型:

已知a>b,且ab=1,則
a2+b2
a-b
的最小值是
 

查看答案和解析>>

科目: 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn滿足Sn+1=(k+1)Sn+2,又a1=2,a2=1.
(1)求實(shí)數(shù)k的值;
(2)問數(shù)列{an}是等比數(shù)列嗎?若是,給出證明;若不是,說明理由;
(3)求出數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目: 來源: 題型:

為了保護(hù)環(huán)境,某工廠在國家的號(hào)召下,把廢棄物回收轉(zhuǎn)化為某種產(chǎn)品,經(jīng)測算,處理成本y(萬元)與處理量x(噸)之間的函數(shù)關(guān)系可近似的表示為:y=x2-50x+900,且每處理一噸廢棄物可得價(jià)值為10萬元的某種產(chǎn)品,同時(shí)獲得國家補(bǔ)貼10萬元.
(1)當(dāng)x∈[10,15]時(shí),判斷該項(xiàng)舉措能否獲利?如果能獲利,求出最大利潤;如果不能獲利,請(qǐng)求出國家最少補(bǔ)貼多少萬元,該工廠才不會(huì)虧損?
(2)當(dāng)處理量為多少噸時(shí),每噸的平均處理成本最少?

查看答案和解析>>

同步練習(xí)冊答案