相關(guān)習(xí)題
 0  227715  227723  227729  227733  227739  227741  227745  227751  227753  227759  227765  227769  227771  227775  227781  227783  227789  227793  227795  227799  227801  227805  227807  227809  227810  227811  227813  227814  227815  227817  227819  227823  227825  227829  227831  227835  227841  227843  227849  227853  227855  227859  227865  227871  227873  227879  227883  227885  227891  227895  227901  227909  266669 

科目: 來源: 題型:解答題

14.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1(a>b>0)$的離心率為$\frac{1}{2}$,點F1,F(xiàn)2分別是橢圓C的左、右焦點,以原點為圓心,橢圓C的短半軸為半徑的圓與直線x-y+$\sqrt{6}$=0相切.
(1)求橢圓C的方程;
(2)若過點F2的直線l與橢圓C相交于M,N兩點,求使△F1MN面積最大時直線l的方程.

查看答案和解析>>

科目: 來源: 題型:選擇題

13.若一個橢圓長軸的長度,短軸的長度和焦距依次成等差數(shù)列,則該橢圓的離心率是( 。
A.e=-1B.$\frac{3}{5}$C.$\frac{4}{5}$D.$\frac{1}{2}$

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知橢圓C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{{\sqrt{6}}}{3}$,焦距為$4\sqrt{2}$,拋物線C2:x2=2py(p>0)的焦點F是橢圓C1的頂點.
(Ⅰ)求C1與C2的標(biāo)準(zhǔn)方程;
(Ⅱ)若C2的切線交C1于P,Q兩點,且滿足$\overrightarrow{FP}•\overrightarrow{FQ}=0$,求直線PQ的方程.

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知橢圓C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{{\sqrt{6}}}{3}$,焦距為$4\sqrt{2}$,拋物線C2:x2=2py(p>0)的焦點F是橢圓C1的頂點.
(Ⅰ)求C1與C2的標(biāo)準(zhǔn)方程;
(Ⅱ)C1上不同于F的兩點P,Q滿足$\overrightarrow{FP}•\overrightarrow{FQ}=0$,且直線PQ與C2相切,求△FPQ的面積.

查看答案和解析>>

科目: 來源: 題型:填空題

10.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{{\sqrt{2}}}{2}$,長軸AB上2016個等分點從左到右依次為點M1,M2,…,M2015,過M1點作斜率為k(k≠0)的直線,交橢圓C于P1,P2兩點,P1點在x軸上方;過M2點作斜率為k(k≠0)的直線,交橢圓C于P3,P4兩點,P3點在x軸上方;以此類推,過M2015點作斜率為k(k≠0)的直線,交橢圓C于P4029,P4030兩點,P4029點在x軸上方,則4030條直線AP1,AP2,…,AP4030的斜率乘積為-2-2015

查看答案和解析>>

科目: 來源: 題型:解答題

9.如圖,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),離心率e=$\frac{\sqrt{2}}{2}$,M(x0,y0)是橢圓上的任一點,從原點O向圓M:(x-x02+(y-y02=2作兩條切線,分別交橢圓于點P,Q.
(Ⅰ)若過點(0,-b),(a,0)的直線與原點的距離為$\sqrt{2}$,求橢圓方程;
(Ⅱ)在(Ⅰ)的條件下,若直線OP,OQ的斜率存在,并記為k1,k2.試問k1k2是否為定值?若是,求出該值;若不是,說明理由.

查看答案和解析>>

科目: 來源: 題型:選擇題

8.已知橢圓具有如下性質(zhì):若橢圓的方程為$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),則橢圓在其上一點A(x0,y0)處的切線方程為$\frac{{{x_0}x}}{a^2}+\frac{{{y_0}y}}{b^2}$=1,試運用該性質(zhì)解決以下問題:橢圓C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),其焦距為2,且過點$(1,\frac{{\sqrt{2}}}{2})$.點B為C1在第一象限中的任意一點,過B作C1的切線l,l分別與x軸和y軸的正半軸交于C,D兩點,則△OCD面積的最小值為( 。
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目: 來源: 題型:解答題

7.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過A($\sqrt{2}$,0),離心率為$\frac{\sqrt{2}}{2}$,O為坐標(biāo)原點.
(1)求橢圓C的方程;
(2)設(shè)P,Q,R橢圓上三點,OQ與PR交于M點,且$\overrightarrow{OQ}$=3$\overrightarrow{OM}$,當(dāng)PR中點恰為點M時,判斷△OPR的面積是否為常數(shù),并說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

6.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)經(jīng)過點A(0,-1),期左、右焦點分別為F1、F2,過F2的一條直線與橢圓交于M、N兩點,△MF1N的周長為4$\sqrt{2}$
(Ⅰ)求橢圓C的方程;
(Ⅱ)經(jīng)過點B(1,1)且斜率為k的直線與橢圓C交于不同的兩點P、Q(均異于點A),證明直線AP與AQ斜率之和為定值.

查看答案和解析>>

科目: 來源: 題型:填空題

5.已知F1,F(xiàn)2是橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的左右焦點,點A(1,$\frac{3}{2}$),則∠F1AF2的角平分線l所在直線的斜率為2.′.

查看答案和解析>>

同步練習(xí)冊答案