相關(guān)習題
 0  228461  228469  228475  228479  228485  228487  228491  228497  228499  228505  228511  228515  228517  228521  228527  228529  228535  228539  228541  228545  228547  228551  228553  228555  228556  228557  228559  228560  228561  228563  228565  228569  228571  228575  228577  228581  228587  228589  228595  228599  228601  228605  228611  228617  228619  228625  228629  228631  228637  228641  228647  228655  266669 

科目: 來源: 題型:解答題

9.已知sin(x-$\frac{π}{4}$)=$\frac{{7\sqrt{2}}}{10}$,cos2x=$\frac{7}{25}$,
(Ⅰ)求$cos({\frac{7π}{12}-x})$的值;
(Ⅱ)求$\frac{{sin2x+2{{sin}^2}x}}{1-tanx}$的值.

查看答案和解析>>

科目: 來源: 題型:選擇題

8.已知等差數(shù)列{an}的公差d>0,則下列四個命題:
①數(shù)列{an}是遞增數(shù)列;             
②數(shù)列{nan}是遞增數(shù)列;
③數(shù)列$\left\{{\frac{a_n}{n}}\right\}$是遞增數(shù)列;            
④數(shù)列{an+3nd}是遞增數(shù)列;
其中正確命題的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目: 來源: 題型:選擇題

7.若等差數(shù)列an滿足a3+a5+a7+a9+a11=80,則a8-$\frac{1}{2}{a_9}$=( 。
A.8B.9C.10D.11

查看答案和解析>>

科目: 來源: 題型:選擇題

6.sin20°cos170°-cos20°sin10°=(  )
A.$-\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$-\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目: 來源: 題型:選擇題

5.已知不等式ax2+bx+c>0的解集為$\left\{{x|-\frac{1}{3}<x<2}\right\}$,則不等式cx2+bx+a<0的解集為(  )
A.$\left\{{x|-3<x<\frac{1}{2}}\right\}$B.$\left\{{x|x<-3或x>\frac{1}{2}}\right\}$C.$\left\{{x|-2<x<\frac{1}{3}}\right\}$D.$\left\{{x|x<-2或x>\frac{1}{3}}\right\}$

查看答案和解析>>

科目: 來源: 題型:填空題

4.若實數(shù)x,y滿足2x2+xy-y2=1,則$\frac{x-2y}{5{x}^{2}-2xy+2{y}^{2}}$的最大值為$\frac{1}{2}$.

查看答案和解析>>

科目: 來源: 題型:解答題

3.己知圓C:x2-2x+y2-4y-20=0.直線l:(2m+1)x+(m+1)y-7m-4=0(m∈R)
(1)證明不論m取什么實數(shù),直l與圓恒相交;
(2)求直線l被圓C截得的線段最短長度以及此時直線l的方程.

查看答案和解析>>

科目: 來源: 題型:解答題

2.已知函數(shù)f(x)=x+alnx,在x=1處的切線與直線x+2y=0垂直,函數(shù)g(x)=f(x)+$\frac{1}{2}{x^2}$-bx.
(1)求實數(shù)a的值;
(2)設(shè)x1,x2(x1<x2)是函數(shù)g(x)的兩個極值點,記t=$\frac{x_1}{x_2}$,若b≥$\frac{13}{3}$,
①t的取值范圍;
②求g(x1)-g(x2)的最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

1.證明下列不等式:
(1)已知a>b,e>f,c>0,求證f-ac<e-bc
(2)已知a>b>0,c<d<0,求證:$\root{3}{\frac{a}zzhlbtz}$<$\root{3}{\frac{c}}$.

查看答案和解析>>

科目: 來源: 題型:填空題

20.在△ABC中,角A、B、C的對邊分別為a、b、c,若2sinCcosB=2sinA+sinB,△ABC的面積為S=$\frac{\sqrt{3}}{12}$c,則ab的最小值為$\frac{1}{3}$.

查看答案和解析>>

同步練習冊答案