相關(guān)習題
 0  228558  228566  228572  228576  228582  228584  228588  228594  228596  228602  228608  228612  228614  228618  228624  228626  228632  228636  228638  228642  228644  228648  228650  228652  228653  228654  228656  228657  228658  228660  228662  228666  228668  228672  228674  228678  228684  228686  228692  228696  228698  228702  228708  228714  228716  228722  228726  228728  228734  228738  228744  228752  266669 

科目: 來源: 題型:解答題

18.我國人口老齡化日漸突出,2016年初,“二孩”政策全面實施,根據(jù)國家統(tǒng)計,在2015年初,中國大陸人口總數(shù)約13.7億,人口出生率約為12‰,人口死亡率約為7‰,人口增長率約為5‰,其中人口年齡比例如下表:
年齡段16周歲以下 17至59周歲(勞動年齡)  60周歲及以上
   68%16%
(I)假設每個年齡段內(nèi)的人口按年齡均勻分布,在當前人口增長率的條件下,10年后中國勞動年齡人口占比為多少?(1.00510≈1.05,0.99310≈0.93)
(Ⅱ)事實上每個年齡段的人口分布是不均勻的,假設在17至59周歲人口年齡分布情況中,年齡Y服從如圖正態(tài)分布N(μ,σ2),其中正態(tài)曲線頂點P的坐標為(38,$\frac{1}{6\sqrt{2π}}$).利用正態(tài)分布的知識,求P(32<Y<44).

查看答案和解析>>

科目: 來源: 題型:解答題

17.已知圓C的圓心在射線y=x一4(y≥0)上,在x軸上截得的弦長為4,且過點(2,0).求圓C的標準方程.

查看答案和解析>>

科目: 來源: 題型:填空題

16.△ABC中,若|$\overrightarrow{AB}$|2+|$\overrightarrow{AC}$|2=|$\overrightarrow{AB}$+$\overrightarrow{AC}$|2,則∠A=$\frac{π}{2}$.

查看答案和解析>>

科目: 來源: 題型:解答題

15.求點P(1,-2)關(guān)于直線x+y-1=0的對稱點P′的坐標.

查看答案和解析>>

科目: 來源: 題型:解答題

14.求以P(2,-1)為圓心且被直線x-y-1=0截得的弦長為2$\sqrt{2}$的圓的方程.

查看答案和解析>>

科目: 來源: 題型:填空題

13.已知O為△ABC的垂心,且$\overrightarrow{OA}$+2$\overrightarrow{OB}$+3$\overrightarrow{OC}$=$\overrightarrow{0}$,則A角的值為$\frac{π}{4}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

12.“sinα-cosα=$\frac{1}{3}$”是“sin2α=$\frac{8}{9}$”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知橢圓C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{^{2}}$=1(2>b>0)的上,下頂點分別為A,B,過點B的直線與橢圓交于另一點D,與直線y=-2交于點M.
(Ⅰ)當b=1且點D為橢圓的右頂點時,求三角形AMD的面積S的值;
(Ⅱ)若直線AM,AD的斜率之積為-$\frac{3}{4}$,求橢圓C的方程及$\overrightarrow{MA}$$•\overrightarrow{MD}$的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

10.“m>2”是“函數(shù)f(x)=m+log2x(x≥$\frac{1}{2}$)不存在零點”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目: 來源: 題型:填空題

9.如圖,已知平面α⊥β,α∩β=l,A,B是直線l上的兩點,C、D是平面β內(nèi)的兩點,且DA⊥l,CB⊥l,AD=3,AB=6,CB=6,P是平面α上的一動點,且直線PD,PC與平面α所成角相等,則二面角P-BC-D的余弦值的最小值是$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

同步練習冊答案