相關(guān)習(xí)題
 0  228650  228658  228664  228668  228674  228676  228680  228686  228688  228694  228700  228704  228706  228710  228716  228718  228724  228728  228730  228734  228736  228740  228742  228744  228745  228746  228748  228749  228750  228752  228754  228758  228760  228764  228766  228770  228776  228778  228784  228788  228790  228794  228800  228806  228808  228814  228818  228820  228826  228830  228836  228844  266669 

科目: 來(lái)源: 題型:填空題

11.已知△ABC中,AC=2,AB=4,點(diǎn)P滿足$\overrightarrow{AP}$=x$\overrightarrow{AC}$+y$\overrightarrow{AB}$,x+2y=1(x≥0,y≥0),且|$\overrightarrow{AP}$|的最小值為$\sqrt{3}$,則$\overrightarrow{PA}$•($\overrightarrow{PB}$+$\overrightarrow{PC}$)的最小值=-$\frac{25}{8}$.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

10.已知等比數(shù)列{an}的首項(xiàng)a1=1,且a2、a4、a3成等差,則數(shù)列{an}的公比q=1或-$\frac{1}{2}$,若q<0,則數(shù)列{an}的前4項(xiàng)和S4=$\frac{5}{8}$.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

9.函數(shù)f(x)=sin(2x+$\frac{π}{3}$)的周期為π,在(0,$\frac{π}{2}$]內(nèi)的值域?yàn)閇-$\frac{\sqrt{3}}{2}$,1].

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

8.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{x+y≤1}\end{array}\right.$,目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為M,若M的取值范圍是[1,2],則點(diǎn)M(a,b)所在的區(qū)域是( 。
A.B.C.D.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

7.已知集合P={1,m},Q={m2},若P∪Q=P,則實(shí)數(shù)m所有可以取得值是(  )
A.0B.1,0C.0,-1D.1,-1,0

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

6.已知向量$\overrightarrow{a}$=(cosθ,sinθ),$\overrightarrow$=(2,-1)
(1)若$\overrightarrow{a}$⊥$\overrightarrow$,求$\frac{sinθ-cosθ}{sinθ+cosθ}$的值;
(2)若|$\overrightarrow{a}$-$\overrightarrow$|=2,θ∈(0,$\frac{π}{2}$)求tan2θ的值.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

5.若某程序框圖如圖所示,則該程序運(yùn)行后輸出S的值為(  )
A.$\frac{147}{60}$B.$\frac{17}{6}$C.$\frac{25}{4}$D.$\frac{137}{60}$

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

4.一個(gè)幾何體三視圖如圖,則該幾何體的表面積為(  )
A.6B.7C.6+$\sqrt{2}$D.7+$\sqrt{2}$

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=(m2+m)x${\;}^{{m}^{2}-2m-1}$(m∈R),分別求m的取值范圍.
(1)f(x)為正比例函數(shù);
(2)f(x)為反比例函數(shù);
(3)f(x)在(0,+∞)上為增函數(shù).

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

2.(1)函數(shù)f(x)=$\frac{1}{{x}^{2}-4x+5}$的值域?yàn)椋?,1];
(2)函數(shù)f(x)=$\frac{1-x}{2x+5}$的單調(diào)遞減區(qū)間為(-∞,-$\frac{5}{2}$),(-$\frac{5}{2}$,+∞).

查看答案和解析>>

同步練習(xí)冊(cè)答案