相關(guān)習(xí)題
 0  228743  228751  228757  228761  228767  228769  228773  228779  228781  228787  228793  228797  228799  228803  228809  228811  228817  228821  228823  228827  228829  228833  228835  228837  228838  228839  228841  228842  228843  228845  228847  228851  228853  228857  228859  228863  228869  228871  228877  228881  228883  228887  228893  228899  228901  228907  228911  228913  228919  228923  228929  228937  266669 

科目: 來源: 題型:解答題

7.若數(shù)列{bn}是首項(xiàng)為1,公差為2的等差數(shù)列,求數(shù)列{$\frac{1}{_{n}•_{n+1}}$}的前n項(xiàng)和Tn

查看答案和解析>>

科目: 來源: 題型:填空題

6.虛數(shù)z滿足z+$\frac{1}{z}$∈R,則|z|=1.

查看答案和解析>>

科目: 來源: 題型:填空題

5.已知某幾何體的三視圖如圖所示,則該幾何體的外接球的表面積為13π

查看答案和解析>>

科目: 來源: 題型:填空題

4.設(shè)$\overrightarrow{a}$=(x1,y1),$\overrightarrow$=(x2,y2),向量$\overrightarrow{a}$與$\overrightarrow$的夾角為θ,則
(1)$\overrightarrow{a}$•$\overrightarrow$=x1x2+y1y2;
(2)|$\overrightarrow{a}$|=$\sqrt{\overrightarrow{a}•\overrightarrow{a}}$=$\sqrt{{{x}_{1}}^{2}+{{y}_{1}}^{2}}$;
(3)$\overrightarrow{a}$⊥$\overrightarrow$?$\overrightarrow{a}$•$\overrightarrow$=0?x1x2+y1y2=0;
(4)cosθ=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}||\overrightarrow|}$=$\frac{{x}_{1}{x}_{2}+{y}_{1}{y}_{2}}{\sqrt{{{x}_{1}}^{2}+{{y}_{1}}^{2}}\sqrt{{{x}_{2}}^{2}+{{y}_{2}}^{2}}}$.

查看答案和解析>>

科目: 來源: 題型:解答題

3.已知數(shù)列{an}滿足a1=2和3an+1=an,n=1,2,…,
(1)證明:數(shù)列{an}為等比數(shù)列,并寫出它的通項(xiàng)公式;
(2)記bn=an+n,n=1,2,…,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目: 來源: 題型:解答題

2.在等差數(shù)列{an}中,a1=2,an=17,Sn=209,求n與d.

查看答案和解析>>

科目: 來源: 題型:解答題

1.已知等比數(shù)列{an}的首項(xiàng)a1=25,公比為5.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記bn=log5(5an),n=1,2,…,證明:{bn}是等差數(shù)列,并求b1+b2+…+b100的值.

查看答案和解析>>

科目: 來源: 題型:選擇題

20.若(a+b)n展開式的第4項(xiàng)和第7項(xiàng)的系數(shù)相等,則該展開式共有( 。
A.8項(xiàng)B.9項(xiàng)C.10項(xiàng)D.11項(xiàng)

查看答案和解析>>

科目: 來源: 題型:選擇題

19.已知a,b為直線,α為平面,且a?α,則以下命題正確的是( 。
A.若b∥a,則b∥αB.若b⊥α,則b⊥aC.若b∥α,則b∥aD.若b⊥a,則b⊥α

查看答案和解析>>

科目: 來源: 題型:解答題

18.己知(1+2x)2n展開式的二項(xiàng)式系數(shù)之和是(2$\sqrt{x}$-$\frac{1}{\sqrt{x}}$)n展開式的二項(xiàng)式系數(shù)之和的64倍.
(1)求(1+2x)2n展開式的第3項(xiàng);
(2)求(2$\sqrt{x}$-$\frac{1}{\sqrt{x}}$)n展開式含x的項(xiàng).

查看答案和解析>>

同步練習(xí)冊答案