相關習題
 0  228771  228779  228785  228789  228795  228797  228801  228807  228809  228815  228821  228825  228827  228831  228837  228839  228845  228849  228851  228855  228857  228861  228863  228865  228866  228867  228869  228870  228871  228873  228875  228879  228881  228885  228887  228891  228897  228899  228905  228909  228911  228915  228921  228927  228929  228935  228939  228941  228947  228951  228957  228965  266669 

科目: 來源: 題型:選擇題

7.已知函數(shù)f(x)=x2-ax的圖象在點A(1,f(1))處的切線l與直線x+3y-1=0垂直,記數(shù)列$\{\frac{1}{f(n)}\}$的前n項和為Sn,則S2016的值為(  )
A.$\frac{2015}{2016}$B.$\frac{2016}{2017}$C.$\frac{2014}{2015}$D.$\frac{2017}{2018}$

查看答案和解析>>

科目: 來源: 題型:解答題

6.已知函數(shù)f(x)和g(x)分別是R上的奇函數(shù)和偶函數(shù),且f(x)+g(x)=2ex,其中e為自然對數(shù)的底數(shù).
(Ⅰ)求函數(shù)f(x),g(x)的解析式;
(Ⅱ)當x≥0時,分別出求曲線y=f(x)和y=g(x)切線斜率的最小值;
(Ⅲ)設a≤0,b≥1,證明:當x>0時,曲線y=$\frac{f(x)}{x}$在曲線y=ag(x)+2(1-a)和y=bg(x)+2(1-b)之間,且相互之間沒有公共點.

查看答案和解析>>

科目: 來源: 題型:填空題

5.某幾何體的正(主)視圖和俯視圖如圖所示,則該幾何體的體積的最大值為4.

查看答案和解析>>

科目: 來源: 題型:解答題

4.已知函數(shù)f(x)=$\frac{a{x}^{2}}{{e}^{x}}$,直線y=$\frac{1}{e}$x為曲線y=f(x)的切線(e為自然對數(shù)的底數(shù)).
(1)求實數(shù)a的值;
(2)用min{m,n}表示m,n中的最小值,設函數(shù)g(x)=min{f(x),x-$\frac{1}{x}$}(x>0),若函數(shù)h(x)=g(x)-cx2為增函數(shù),求實數(shù)c的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

3.函數(shù)f(x)=xex在點(-1,f(-1))處的切線方程為y=-$\frac{1}{e}$.

查看答案和解析>>

科目: 來源: 題型:解答題

2.已知函數(shù)f(x)=lnx,g(x)=ex
(1)確定方程f(x)=$\frac{x+1}{x-1}$實數(shù)根的個數(shù);
(2)我們把與兩條曲線都相切的直線叫作這兩條曲線的公切線,試確定曲線y=f(x),y=g(x)公切線的條數(shù),并證明你的結論.

查看答案和解析>>

科目: 來源: 題型:填空題

1.已知長方體ABCD-A1B1C1D1,設$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow$,$\overrightarrow{A{A}_{1}}$=$\overrightarrow{c}$,E,F(xiàn)分別為AA1,C1D1中點,則$\overrightarrow{EF}$可用$\vec a,\vec b,\vec c$表示為$\frac{1}{2}$($\overrightarrow{a}$+$\overrightarrow{c}$)+$\overrightarrow$.

查看答案和解析>>

科目: 來源: 題型:選擇題

20.已知△ABC三邊長構成公差為d(d≠0)的等差數(shù)列,則△ABC最大內角α的取值范圍為(  )
A.$\frac{π}{3}$<α≤$\frac{5π}{6}$B.$\frac{π}{3}$<α<πC.$\frac{π}{3}$≤α<πD.$\frac{π}{3}$<α≤$\frac{2π}{3}$

查看答案和解析>>

科目: 來源: 題型:解答題

19.(1)設x>-1,求函數(shù)y=x+$\frac{4}{x+1}$+6的最小值;
(2)求函數(shù)y=$\frac{x^2+8}{x-1}$(x>1)的最值.

查看答案和解析>>

科目: 來源: 題型:填空題

18.已知函數(shù)f(x)=x2+4lnx,若存在滿足1≤x0≤4的實數(shù)x0,使得曲線y=f(x)在點(x0,f(x0))處的切線與直線x+my-2=0垂直,則實數(shù)m的取值范圍是[4$\sqrt{2}$,9].

查看答案和解析>>

同步練習冊答案