相關(guān)習(xí)題
 0  228962  228970  228976  228980  228986  228988  228992  228998  229000  229006  229012  229016  229018  229022  229028  229030  229036  229040  229042  229046  229048  229052  229054  229056  229057  229058  229060  229061  229062  229064  229066  229070  229072  229076  229078  229082  229088  229090  229096  229100  229102  229106  229112  229118  229120  229126  229130  229132  229138  229142  229148  229156  266669 

科目: 來(lái)源: 題型:解答題

12.如圖,PA⊥平面ABCD,矩形ABCD的邊長(zhǎng)AB=1,BC=2,E為BC的中點(diǎn).
(1)證明:PE⊥DE;
(2)如果異面直線AE與PD所成角的大小為$\frac{π}{3}$,求PA的長(zhǎng)及點(diǎn)A到平面PED的距離.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

11.如圖所示,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,點(diǎn)D是AB的中點(diǎn).
(1)求證:AC⊥BC1;
(2)求證:AC1∥平面CDB1;
(3)求直線DB1與平面BCC1B1所成角的正切值.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

10.如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點(diǎn).
(Ⅰ)證明:AE⊥平面PCD;
(Ⅱ)求PB和平面PAC所成的角的正切值.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

9.球的半徑擴(kuò)大為原來(lái)的2倍,則其表面積擴(kuò)大為原來(lái)的( 。
A.2倍B.4倍C.6倍D.8倍

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

8.為了解某社區(qū)居民的家庭年收入與年支出的關(guān)系,隨機(jī)調(diào)查了該社區(qū)5戶家庭,得到如下統(tǒng)計(jì)數(shù)據(jù)表:(單位:萬(wàn)元)
收入x8.28.610.011.311.9
支出y6.27.58.08.59.8
(1)請(qǐng)畫出上表數(shù)據(jù)的散點(diǎn)圖;(3)試根據(jù)(2)求出的線性回歸方程,預(yù)測(cè)該社區(qū)一戶收入為15萬(wàn)元家庭年支出為多少?

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

7.利用一個(gè)球體毛坯切削后得到一個(gè)四棱錐P-ABCD,其中底面四邊形ABCD是邊長(zhǎng)為1的正方形,PA=1,且PA⊥平面ABCD,則球體毛坯體積的最小值應(yīng)為( 。
A.$\frac{{\sqrt{2}π}}{3}$B.$\frac{4π}{3}$C.$\frac{{8\sqrt{2}π}}{3}$D.$\frac{{\sqrt{3}π}}{2}$

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

6.在正方體ABCD-A1B1C1D1中,求直線A1D和平面ADC1B1所成的角

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

5.已知兩個(gè)球的表面積之比為1:4,則這兩個(gè)球的半徑之比為(  )
A.1:4B.1:2C.1:16D.1:64

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

4.如圖所示,四棱錐P-ABCD的底面為直角梯形,∠ADC=∠DCB=90°,AD=1,BC=3,PC=CD=2,PC⊥底面ABCD,E為AB的中點(diǎn).
(1)求證:平面PDE⊥平面PAC;
(Ⅱ)求直線PC與平面PDE所成的角的正弦值.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

3.已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,且滿足an+Sn=1(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)${c_n}=\frac{1}{a_n}$,數(shù)列{bn}滿足${b_1}{c_1}+{b_2}{c_2}+…+{b_n}{c_n}=(2n-1){2^{n+1}}+2$,求數(shù)列{bn}的通項(xiàng)公式;
(3)設(shè)${d_n}=\frac{1}{a_n}-1$,求證:$\frac{d_1}{d_2}+\frac{d_2}{d_3}+…+\frac{d_n}{{{d_{n+1}}}}>\frac{n}{2}-\frac{1}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案