相關(guān)習(xí)題
 0  229112  229120  229126  229130  229136  229138  229142  229148  229150  229156  229162  229166  229168  229172  229178  229180  229186  229190  229192  229196  229198  229202  229204  229206  229207  229208  229210  229211  229212  229214  229216  229220  229222  229226  229228  229232  229238  229240  229246  229250  229252  229256  229262  229268  229270  229276  229280  229282  229288  229292  229298  229306  266669 

科目: 來源: 題型:填空題

7.橢圓$\frac{y^2}{5}$+x2=1的長軸長是$2\sqrt{5}$,焦點(diǎn)坐標(biāo)是(0,±2).

查看答案和解析>>

科目: 來源: 題型:填空題

6.已知單位向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$的夾角為120°,|x$\overrightarrow{{e}_{1}}$+y$\overrightarrow{{e}_{2}}$|=$\sqrt{3}$(x,y∈R),則|x$\overrightarrow{{e}_{1}}$-y$\overrightarrow{{e}_{2}}$|的取值范圍是[1,3].

查看答案和解析>>

科目: 來源: 題型:解答題

5.某位同學(xué)進(jìn)行寒假社會(huì)實(shí)踐活動(dòng),為了對(duì)白天平均氣溫與某奶茶店的某種飲料銷量之間的關(guān)系進(jìn)行分析研究,他分別記錄了1月11日至1月15日的白天平均氣溫x(℃)與該奶茶店的這種飲料銷量y(杯)得到如下數(shù)據(jù)
日期11日12日13日14日15日
平均氣溫x(℃)91012118
銷量y(杯)2325302621
(1)若先從這5組數(shù)據(jù)中抽取2組,列出所有可能的結(jié)果并求抽出的2組數(shù)據(jù)恰好是相鄰2天數(shù)據(jù)的概率;
(2)請(qǐng)根據(jù)所給的5組數(shù)據(jù)求出y關(guān)于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$,并根據(jù)線性回歸方程預(yù)測(cè)當(dāng)氣象臺(tái)預(yù)報(bào)1月16日的白天氣溫為7℃時(shí)奶茶店這種飲料的銷量(結(jié)果四舍五入).
附:線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$中$\left\{\begin{array}{l}{\widehat=\underset{\stackrel{n}{∑}}{i=1}({x}_{i}-\overline{x})({y}_{i}-\overline{y})=\frac{\underset{\stackrel{n}{∑}}{i=1}{x}_{i}{y}_{i}-n\overline{xy}}{\underset{\stackrel{n}{∑}}{i=1}{{x}_{i}}^{2}-n\overline{{x}^{2}}}}\\{\widehat{a}=\overline{y}-\widehat\overline{x}}\end{array}\right.$,其中$\overline{x}$,$\overline{y}$為樣本平均值.

查看答案和解析>>

科目: 來源: 題型:選擇題

4.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果為( 。
A.3B.13C.8D.10

查看答案和解析>>

科目: 來源: 題型:解答題

3.已知F1(-$\sqrt{3}$,0),F(xiàn)2($\sqrt{3}$,0),點(diǎn)M是圓x2+y2=4上的動(dòng)點(diǎn),動(dòng)點(diǎn)G滿足$\overrightarrow{{F}_{2}M}$=$\overrightarrow{MG}$,過點(diǎn)M作直線l⊥F2G并交直線F1G于點(diǎn)N.
(1)求點(diǎn)N的軌跡方程E;
(2)設(shè)P是(1)中軌跡E上第一象限內(nèi)的點(diǎn),點(diǎn)P關(guān)于原點(diǎn)O的對(duì)稱點(diǎn)為A,關(guān)于x軸的對(duì)稱點(diǎn)為Q,線段PQ與x軸相交于點(diǎn)C,點(diǎn)D為CQ的中點(diǎn),若直線AD與橢圓E的另一個(gè)交點(diǎn)為B,試判斷直線PA,PB是否相互垂直?并證明你的結(jié)論.

查看答案和解析>>

科目: 來源: 題型:填空題

2.已知8a3+9a+c=0,b3-$\frac{1}{{3}^}$-c=0,其中a,b,c均為非零實(shí)數(shù),則$\frac{a}$的值為-$\frac{1}{2}$.

查看答案和解析>>

科目: 來源: 題型:填空題

1.已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,對(duì)?n∈N*有2Sn=an2+an.令bn=$\frac{\sqrt{{{a}_{n}}_{+1}}-\sqrt{{a}_{n}}}{\sqrt{{a}_{n+1}}•\sqrt{{a}_{n}}}$,設(shè){bn}的前n項(xiàng)和為Tn,則T15=$\frac{3}{4}$.

查看答案和解析>>

科目: 來源: 題型:填空題

20.若(2x+$\frac{1}{\sqrt{x}}$)n的展開式中第2項(xiàng)與第3項(xiàng)系數(shù)相等,則${∫}_{0}^{3}$xn-2dx=$\frac{81}{4}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

19.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),過其右焦點(diǎn)F作圓x2+y2=a2的兩條切線,切點(diǎn)記作C,D,原點(diǎn)為O,∠COD=$\frac{π}{2}$,則雙曲線的離心率為( 。
A.$\frac{3}{2}$B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目: 來源: 題型:選擇題

18.將函數(shù)y=sin(-2x)+cos(2x)的圖象(  )得到函數(shù)y=$\sqrt{2}$sin(-2x)的圖象.
A.向左平移$\frac{π}{8}$個(gè)單位B.向右平移$\frac{π}{8}$個(gè)單位
C.向左平移$\frac{π}{4}$個(gè)單位D.向右平移$\frac{π}{4}$個(gè)單位

查看答案和解析>>

同步練習(xí)冊(cè)答案