相關(guān)習題
 0  229536  229544  229550  229554  229560  229562  229566  229572  229574  229580  229586  229590  229592  229596  229602  229604  229610  229614  229616  229620  229622  229626  229628  229630  229631  229632  229634  229635  229636  229638  229640  229644  229646  229650  229652  229656  229662  229664  229670  229674  229676  229680  229686  229692  229694  229700  229704  229706  229712  229716  229722  229730  266669 

科目: 來源: 題型:解答題

9.已知直線l:y=$\frac{1}{2}$x和兩定點A(1,1)、B(2,2),在直線l上取一點P,使PA2+PB2最小,試求點P的坐標.

查看答案和解析>>

科目: 來源: 題型:填空題

8.已知:函數(shù)f(3x)=log2$\sqrt{\frac{9x+5}{2}}$,則f(1)=1.

查看答案和解析>>

科目: 來源: 題型:解答題

7.如圖所示的鐵片由兩部分組成,半徑為1的半圓O及等腰直角△EFH,其中FE⊥FH.現(xiàn)將鐵片裁剪成盡可能大的梯形鐵片ABCD(不計損耗),AD∥BC,且點A,B在弧$\widehat{EF}$上.點C,D在斜邊EH上.設(shè)∠AOE=θ.
(1)求梯形鐵片ABCD的面積S關(guān)于θ的函數(shù)關(guān)系式;
(2)試確定θ的值,使得梯形鐵片ABCD的面積S最大,并求出最大值.

查看答案和解析>>

科目: 來源: 題型:解答題

6.給定數(shù)列a1,a2,…,an,對i=1,2,…,n-1,該數(shù)列前i項的最大值記為Ai,后n-i項的最小值記為Bi,di=Ai-Bi
(1)設(shè)an=$\frac{1}{3}$×2n-1,求d5;
(2)設(shè)a1,a2,…,an(n≥4)是公比大于1的等比數(shù)列,且a1>0時,證明:d1,d2,…,dn-1成等比數(shù)列;
(3)設(shè)d1,d2,…,dn-1是公差大于0的等差數(shù)列,且d1>0,證明:a1,a2,…,an-1成等差數(shù)列.

查看答案和解析>>

科目: 來源: 題型:解答題

5.已知拋物線C:x2=2py的焦點F到準線l的距離為2,點P、Q都是拋物線上的點,且點Q與點P關(guān)于y軸對稱.
(Ⅰ)求拋物線的標準方程和焦點坐標;
(Ⅱ)圓E:x2+(y-4)2=1,過點P作圓C的兩條切線,分別與拋物線交于M,N兩點(M、N不與點P重合),若直線MN與拋物線在點Q處的切線平行,求點P的坐標.

查看答案和解析>>

科目: 來源: 題型:填空題

4.如圖所示三棱錐A-BCD,其中AB=CD=5,AC=BD=6,AD=BC=7,則該三棱錐外接球的表面積為55π.

查看答案和解析>>

科目: 來源: 題型:選擇題

3.已知焦點為F的拋物線y2=2px(p>0)上有一點A(m,2$\sqrt{2}$),以A為圓心,|AF|為半徑的圓被y軸截得的弦長為2$\sqrt{5}$,則m=( 。
A.$\sqrt{2}$B.$2\sqrt{2}$C.2D.4

查看答案和解析>>

科目: 來源: 題型:解答題

2.已知動圓N經(jīng)過定點F(0,$\frac{1}{2}$),且與定直線y=-$\frac{1}{2}$相切,動圓圓心N的軌跡記為曲線C,點Q(x0,y0)是曲線C上一點
(1)求曲線C的方程;
(2)若直線l過點F(0,$\frac{1}{2}$)且與曲線C交于不同于Q的兩點A、B,分別過A、B、Q、且斜率存在的三條直線l1,l2,l0都與曲線C有且只有一個公共點,P、D、E分別為l1與l2,l0與l1,l0與l2的交點,求△QAB與△PDE的面積之比.

查看答案和解析>>

科目: 來源: 題型:解答題

1.在△ABC中,已知點A(5,-2)、B(7,3),且邊AC的中點M在y軸上,邊BC的中點N在x軸上.求:
(1)點C的坐標;
(2)直線MN的方程;
(3)直線AB與兩坐標軸圍成三角形的面積.

查看答案和解析>>

科目: 來源: 題型:填空題

20.如果滿足∠ABC=60°,AC=12,BC=k的△ABC有兩個,那么k的取值范圍是$12<k<8\sqrt{3}$.

查看答案和解析>>

同步練習冊答案