相關(guān)習(xí)題
 0  229542  229550  229556  229560  229566  229568  229572  229578  229580  229586  229592  229596  229598  229602  229608  229610  229616  229620  229622  229626  229628  229632  229634  229636  229637  229638  229640  229641  229642  229644  229646  229650  229652  229656  229658  229662  229668  229670  229676  229680  229682  229686  229692  229698  229700  229706  229710  229712  229718  229722  229728  229736  266669 

科目: 來源: 題型:選擇題

9.已知sin2α=$\frac{1}{2}$,且α∈(0,$\frac{π}{4}$),則sinα-cosα等于( 。
A.$\frac{1}{2}$B.-$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{2}}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目: 來源: 題型:選擇題

8.若平面α、β的法向量分別為n1=(1,2,-2),n2=(-3,-6,6),則(  )
A.α∥βB.α⊥βC.α,β相交但不垂直D.以上都不正確

查看答案和解析>>

科目: 來源: 題型:解答題

7.用數(shù)字0,1,2,3,4,5組成沒有重復(fù)數(shù)字的四位數(shù).
(1)可組成多少個(gè)不同的四位數(shù)?
(2)可組成多少個(gè)不同的偶數(shù)?

查看答案和解析>>

科目: 來源: 題型:解答題

6.?dāng)?shù)列{an}和{bn}滿足:對(duì)任意自然數(shù)n,an,bn,an+1成等差數(shù)列,bn,an+1,bn+1成等比數(shù)列,且b5=196,b7=400.?dāng)?shù)列{cn}的前n項(xiàng)和為Sn,且cn=2-2Sn(n∈N*
(1)求證:數(shù)列{$\sqrt{_{n}}$}為等差數(shù)列;
(2)求數(shù)列{bn},{cn}的通項(xiàng)公式;
(3)數(shù)列{$\sqrt{_{n}}$•cn}的前n項(xiàng)和為Tn,求證:Tn<$\frac{7}{2}$.

查看答案和解析>>

科目: 來源: 題型:解答題

5.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的一段圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)增區(qū)間;
(3)求函數(shù)f(x)在[-$\frac{3π}{8}$,$\frac{π}{4}$]上的單調(diào)減區(qū)間.

查看答案和解析>>

科目: 來源: 題型:解答題

4.曲線x2+4y2-6x-16y+21=0與平行y軸的直線交于A,B兩點(diǎn),曲線的中心為O′,試求△O′AB面積的最大值.

查看答案和解析>>

科目: 來源: 題型:解答題

3.己知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=$\frac{1}{2}$(3an-1),數(shù)列{bn}為等差數(shù)列,且b1=a1,b5=a3
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)cn=$\frac{4({n}^{2}+n+1)}{_{n+1}^{2}-1}$,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目: 來源: 題型:填空題

2.將A,B,C,D,E,F(xiàn),G排成一排,要求A與B相鄰,C與D相鄰,E與F不相鄰,則共有288種不同的排法.

查看答案和解析>>

科目: 來源: 題型:解答題

1.(1)四面體的一個(gè)頂點(diǎn)為A,從其他頂點(diǎn)和各棱中點(diǎn)中取3個(gè)點(diǎn),使它們和點(diǎn)A在同一個(gè)面上有多少種不同方法?
(2)四面體的頂點(diǎn)和各棱中點(diǎn)共10個(gè)點(diǎn),從其中取4個(gè)不共面的點(diǎn),有多種不同的取法?

查看答案和解析>>

科目: 來源: 題型:解答題

20.在正項(xiàng)等比數(shù)列{an}中,已知a1=2,a5=32.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=$\frac{n}{{a}_{n}}$,且數(shù)列{bn}的前n項(xiàng)和記為Sn,求證Sn<2.

查看答案和解析>>

同步練習(xí)冊(cè)答案