相關(guān)習題
 0  229594  229602  229608  229612  229618  229620  229624  229630  229632  229638  229644  229648  229650  229654  229660  229662  229668  229672  229674  229678  229680  229684  229686  229688  229689  229690  229692  229693  229694  229696  229698  229702  229704  229708  229710  229714  229720  229722  229728  229732  229734  229738  229744  229750  229752  229758  229762  229764  229770  229774  229780  229788  266669 

科目: 來源: 題型:解答題

20.已知函數(shù)f(x)=x2-ln$\frac{1}{x}$.
(1)求函數(shù)f(x)在[$\frac{1}{e}$,e2]上的最大值和最小值;
(2)證明:當x∈(1,+∞)時,函數(shù)g(x)=$\frac{2}{3}$x3+$\frac{1}{2}$x2的圖象在y=f(x)的圖象上方.

查看答案和解析>>

科目: 來源: 題型:解答題

19.設(shè)函數(shù)f(x)=(1+x)2-4lnx.
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)當0<a<2時,求函數(shù)g(x)=f(x)-x2-ax-1在區(qū)間[0,3]上的最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

18.已知函數(shù)f(x)=$\frac{2x}{x+1}$(x>0).
(Ⅰ)求證:函數(shù)f(x)在(0,+∞)上為增函數(shù);
(Ⅱ)當x∈(0,1]時,若tf(2x)≥2x-2恒成立,求實數(shù)t的取值范圍;
(Ⅲ)設(shè)g(x)=log2f(x),試討論函數(shù)F(x)=|g(x)|2-(3m+1)|g(x)|+3m(m∈R)的零點情況.

查看答案和解析>>

科目: 來源: 題型:解答題

17.已知函數(shù)f(x)=x2+$\frac{2}{π}$sin$\frac{π}{2}$x,g(x)=lnx+$\frac{1}{2}$x2-(m+2)x(x∈R).
(1)當曲線y=f(x)在點(1,f(1))處的切線與曲線y=g(x)相切于點(2,g(2)),求m的值;
(2)若x1=a,x2=b是函數(shù)g(x)的兩個極值點,且$\frac{a}$≥4.
①求實數(shù)m的取值范圍;
②求g(b)-g(a)的最大值.

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知函數(shù)f(x)=alnx+x2-1
(1)求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)若f(x)>(a+1)lnx+ax-1在(1,+∞)上恒成立,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

15.已知函數(shù)$f(x)=alnx-\frac{x}{2}$在x=2處取得極值.
(Ⅰ)求a實數(shù)的值;
(Ⅱ)當x>1時,$f(x)+\frac{k}{x}<0$恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

14.已知函數(shù)f(x)=x3-bx2+4x(b∈R)在x=2處取得極值.
(Ⅰ)求b的值;
(Ⅱ)求f(x)在區(qū)間[0,4]上的最大值和最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{1}{2}{x^2}-({{a^2}-a})lnx-x$(a≤$\frac{1}{2}$).
(Ⅰ) 討論函數(shù)f(x)的單調(diào)性;
(Ⅱ) 設(shè)g(x)=a2lnx2-x,若f(x)>g(x)對?x>1恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知函數(shù)f(x)=x3-ax2+1(a∈R)
(1)當a=1時,求f(x)的單調(diào)區(qū)間;
(2)若當x>0時,不等式f(x)>0恒成立,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知函數(shù)f(x)=x3-3x.
(Ⅰ)求曲線y=f(x)在點(2,f(2))處的切線方程;
(Ⅱ)求函數(shù)f(x)在[-1,m](m>-1)上的最小值.

查看答案和解析>>

同步練習冊答案