相關(guān)習(xí)題
 0  229659  229667  229673  229677  229683  229685  229689  229695  229697  229703  229709  229713  229715  229719  229725  229727  229733  229737  229739  229743  229745  229749  229751  229753  229754  229755  229757  229758  229759  229761  229763  229767  229769  229773  229775  229779  229785  229787  229793  229797  229799  229803  229809  229815  229817  229823  229827  229829  229835  229839  229845  229853  266669 

科目: 來源: 題型:填空題

17.5名實(shí)習(xí)老師到3個(gè)班級(jí)參加教育實(shí)習(xí)活動(dòng),則每個(gè)班級(jí)至少有一名實(shí)習(xí)老師的方案共有150種.

查看答案和解析>>

科目: 來源: 題型:選擇題

16.設(shè)隨機(jī)變量ξ服從正態(tài)分布N(4,7),若P(ξ>a+2)=P(ξ<a-2),則a=( 。
A.1B.2C.3D.4

查看答案和解析>>

科目: 來源: 題型:選擇題

15.已知隨機(jī)變量ξ+η=7,若ξ~B(10,0.6),則E(η),D(η)分別是(  )
A.1和2.4B.2和2.4C.2和5.6D.6和5.6

查看答案和解析>>

科目: 來源: 題型:選擇題

14.若一個(gè)三位數(shù)的十位數(shù)數(shù)字比個(gè)位數(shù)字和百位數(shù)字都大,則稱這個(gè)數(shù)為“凸數(shù)”,現(xiàn)從1,2,3,4,5,這五個(gè)數(shù)字中任取3個(gè)數(shù),組成無重復(fù)數(shù)字的三位數(shù),其中“凸數(shù)”有( 。
A.120個(gè)B.80個(gè)C.40個(gè)D.20個(gè)

查看答案和解析>>

科目: 來源: 題型:選擇題

13.復(fù)數(shù)z=$\frac{5+i}{1-i}$的虛部為( 。
A.2B.-2C.-3D.3

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知各項(xiàng)均大于1的數(shù)列{an}滿足:a1=$\frac{3}{2}$,an+1=$\frac{1}{2}$(an+$\frac{1}{a_n}}$),(n∈N*),bn=log5$\frac{{{a_n}+1}}{{{a_n}-1}}$.
(Ⅰ)證明{bn}為等比數(shù)列,并求{bn}通項(xiàng)公式;
(Ⅱ)若cn=$\frac{{{{log}_2}{b_{n+2}}}}{b_n}$,Tn為{cn}的前n項(xiàng)和,求證:Tn<6.

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知遞增的等差數(shù)列{an},首項(xiàng)a1=2,Sn為其前n項(xiàng)和,且2S1,2S2,3S3成等比數(shù)列.
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=$\frac{4}{{{a_n}{a_{n+1}}}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目: 來源: 題型:填空題

10.已知在△ABC中,AC=3,G為重心,邊AC的垂直平分線與BC交于點(diǎn)N,且$\overrightarrow{NG}$•$\overrightarrow{NC}$-$\overrightarrow{NG}$•$\overrightarrow{NA}$=-4,則$\overrightarrow{AB}$•$\overrightarrow{AC}$=$-\frac{15}{2}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

9.設(shè){an}為單調(diào)遞增數(shù)列,首項(xiàng)a1=4,且滿足an+12+an2+16=8(an+1+an)+2an+1•an,n∈N*,則a1-a2+a3-a4+…+a2n-1-a2n=( 。
A.-2n(2n-1)B.-3n(n+3)C.-4n(2n+1)D.-6n(n+1)

查看答案和解析>>

科目: 來源: 題型:選擇題

8.非零向量$\overrightarrow a$、$\overrightarrow b$滿足|$\overrightarrow b}$|=2,<$\overrightarrow a$,$\overrightarrow b$>=30°,且對(duì)?λ>0,且|$\overrightarrow a$-λ$\overrightarrow b}$|≥|${\overrightarrow a$-$\overrightarrow b}$|恒成立,則$\overrightarrow a$•$\overrightarrow b$=( 。
A.4B.$2\sqrt{3}$C.2D.$\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案