15.已知隨機(jī)變量ξ+η=7,若ξ~B(10,0.6),則E(η),D(η)分別是( 。
A.1和2.4B.2和2.4C.2和5.6D.6和5.6

分析 根據(jù)變量ξ~B(10,0.6)可以根據(jù)公式做出這組變量的均值與方差,隨機(jī)變量ξ+η=7,知道變量η也符合二項(xiàng)分布,故可得結(jié)論.

解答 解:∵ξ~B(10,0.6),∴Eξ=10×0.6=6,Dξ=10×0.6×0.4=2.4,
∵ξ+η=7,
∴Eη=E(7-ξ)=1,Dη=D(1-ξ)=2.4,
故選:A.

點(diǎn)評(píng) 本題考查變量的均值與方差,均值反映數(shù)據(jù)的平均水平,而方差反映數(shù)據(jù)的波動(dòng)大小,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.m為何實(shí)數(shù)時(shí),復(fù)數(shù)z=(2+i)m2-3(i+1)m-2(1-i)是:
(1)虛數(shù);
(2)若z<0,求m;
(3)z所對(duì)應(yīng)的點(diǎn)在第三象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知數(shù)列{an}滿足a1+2a2+3a3+…+nan=(n+1)(n+2)(n∈N*),則an=$\left\{\begin{array}{l}{6,n=1}\\{2+\frac{2}{n},n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=$\sqrt{3}$cos2x+sinxcosx.
(1)求f($\frac{π}{12}$)的值;
(2)若α∈(0,π),f($\frac{α}{2}$)=$\frac{1}{4}$+$\frac{\sqrt{3}}{2}$,求sin(α+$\frac{7π}{12}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知在△ABC中,AC=3,G為重心,邊AC的垂直平分線與BC交于點(diǎn)N,且$\overrightarrow{NG}$•$\overrightarrow{NC}$-$\overrightarrow{NG}$•$\overrightarrow{NA}$=-4,則$\overrightarrow{AB}$•$\overrightarrow{AC}$=$-\frac{15}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.函數(shù)f(x)=ax3+bsinx+1,若f($\sqrt{3}$)=2,則f(-$\sqrt{3}$)的值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.將函數(shù)y=sinx圖象向左平移$\frac{π}{4}$個(gè)單位,再將橫坐標(biāo)變?yōu)樵瓉?lái)的$\frac{1}{ω}$(ω>0),縱坐標(biāo)不變,得到函數(shù)y=f(x)的圖象,若函數(shù)y=f(x)的圖象在(0,$\frac{π}{2}$)上有且僅有一個(gè)對(duì)稱中心,則ω的取值范圍為(  )
A.($\frac{1}{2}$,$\frac{5}{2}$]B.($\frac{3}{2}$,$\frac{7}{2}$]C.[$\frac{3}{2}$,$\frac{7}{2}$)D.[$\frac{1}{2}$,$\frac{5}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.求m為何值時(shí),這三條直線l1:4x+y=4,l2:mx+y=0,l3:2x-3my=4,不能構(gòu)成三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=lnx
(Ⅰ)求函數(shù)f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)證明:當(dāng)x>1時(shí),f(x)<x-1
(Ⅲ)設(shè)h(x)=f(x)-k(x-1),若h(x)存在最大值,且當(dāng)最大值大于2k-2時(shí),確定實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案