相關(guān)習(xí)題
 0  229937  229945  229951  229955  229961  229963  229967  229973  229975  229981  229987  229991  229993  229997  230003  230005  230011  230015  230017  230021  230023  230027  230029  230031  230032  230033  230035  230036  230037  230039  230041  230045  230047  230051  230053  230057  230063  230065  230071  230075  230077  230081  230087  230093  230095  230101  230105  230107  230113  230117  230123  230131  266669 

科目: 來源: 題型:填空題

4.已知實數(shù)x,y滿足不等式$\left\{{\begin{array}{l}{x-y+1≥0}\\{x+y-2≤0}\\{y≥0}\end{array}}\right.$,則z=2x-y的最大值為4.

查看答案和解析>>

科目: 來源: 題型:選擇題

3.根據(jù)如圖所示的程序語句,若輸入的x值為3,則輸出的y值為( 。
A.2B.3C.6D.27

查看答案和解析>>

科目: 來源: 題型:選擇題

2.復(fù)數(shù)$\frac{1+i}{1-i}$-$\frac{1-i}{1+i}$=( 。
A.0B.2C.-2iD.2i

查看答案和解析>>

科目: 來源: 題型:選擇題

1.已知全集U=R,M={x|y=ln(1-x)},N={x|x(x-2)<0},則(∁UM)∩N=( 。
A.{x|x≥1}B.{x|1≤x<2}C.{x|0≤x<1}D.{x|0<x≤1}

查看答案和解析>>

科目: 來源: 題型:解答題

20.設(shè)數(shù)集A={-1,x1,x2,…xn},其中0<x1<x2<…<xn,n≥2,向量集B={$\overrightarrow{a}$|$\overrightarrow{a}$=(x,y),x∈A,y∈A}.若?$\overrightarrow{{a}_{1}}$∈B,?$\overrightarrow{{a}_{2}}$∈B使得$\overrightarrow{{a}_{1}}$•$\overrightarrow{{a}_{2}}$=0,則稱A具有性質(zhì)P.
(1)若a>1,數(shù)集A={-1,1,a},求證:數(shù)集A具有性質(zhì)P;
(2)若b>$\sqrt{2}$,數(shù)集A={-1,1,$\sqrt{2}$,b}具有性質(zhì)P,求b的值;
(3)若數(shù)集A={-1,x1,x2,…xn}(其中0<x1<x2<…<xn,n≥2)具有性質(zhì)P,x1=1,x2=q(q為常數(shù),q>1),求數(shù)列{xk}的通項公式xk(k∈N*,k≤n).

查看答案和解析>>

科目: 來源: 題型:填空題

19.已知等比數(shù)列{an}的前n項和為Sn,公比q=2,S10=1023,則S2+S4+S6+S8+S10的值為1359.

查看答案和解析>>

科目: 來源: 題型:填空題

18.已知α,β是兩個不同的平面,m,n是兩條不同的直線,給出下列命題:
①若m⊥α,m?β,則α⊥β;
②若m⊥n,m⊥α,則n∥α;
③若α∩β=m,n∥m,且n?α,n?β,則n∥α且n∥β.
④若m∥α,α⊥β,則m⊥β.
其中真命題的個數(shù)是2.

查看答案和解析>>

科目: 來源: 題型:填空題

17.已知集合A={x|x-a<0},B={x|x2-2x-3<0},若B⊆A,則實數(shù)a的取值范圍是a≥3.

查看答案和解析>>

科目: 來源: 題型:填空題

16.已知函數(shù)f(x)=cos(2x+$\frac{π}{3}$)-cos2x,其中x∈R,給出下列四個結(jié)論:
①函數(shù)f(x)是最小正周期為π的奇函數(shù);
②函數(shù)f(x)圖象的一條對稱軸是直線x=$\frac{2π}{3}$;
③函數(shù)f(x)圖象的一個對稱中心為($\frac{5π}{12}$,0);
④函數(shù)f(x)的單調(diào)遞增區(qū)間為[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$],k∈Z.
其中正確的結(jié)論序號②③④  

查看答案和解析>>

科目: 來源: 題型:填空題

15.以坐標(biāo)軸為對稱軸,原點為頂點,且過圓x2+y2-2x+6y+9=0圓心的拋物線方程是y2=9x或x2=$-\frac{1}{3}$y.

查看答案和解析>>

同步練習(xí)冊答案