相關(guān)習(xí)題
 0  230222  230230  230236  230240  230246  230248  230252  230258  230260  230266  230272  230276  230278  230282  230288  230290  230296  230300  230302  230306  230308  230312  230314  230316  230317  230318  230320  230321  230322  230324  230326  230330  230332  230336  230338  230342  230348  230350  230356  230360  230362  230366  230372  230378  230380  230386  230390  230392  230398  230402  230408  230416  266669 

科目: 來(lái)源: 題型:選擇題

16.秦九韶算法是中國(guó)南宋時(shí)期的數(shù)學(xué)家秦九韶提出的一種多項(xiàng)式簡(jiǎn)化算法,對(duì)于求一個(gè)n次多項(xiàng)式函數(shù)fn(x)=anxn+an-1xn-1+…+a1x+a0的具體函數(shù)值,運(yùn)用常規(guī)方法計(jì)算出結(jié)果最多需要n次加法和$\frac{n(n+1)}{2}$乘法,而運(yùn)用秦九韶算法由內(nèi)而外逐層計(jì)算一次多項(xiàng)式的值的算法至多需要n次加法和n次乘法.對(duì)于計(jì)算機(jī)來(lái)說(shuō),做一次乘法運(yùn)算所用的時(shí)間比做一次加法運(yùn)算要長(zhǎng)得多,所以此算法極大地縮短了CPU運(yùn)算時(shí)間,因此即使在今天該算法仍具有重要意義.運(yùn)用秦九韶算法計(jì)算f(x)=0.5x6+4x5-x4+3x3-5x當(dāng)x=3時(shí)的值時(shí),最先計(jì)算的是( 。
A.-5×3=-15B.0.5×3+4=5.5
C.3×33-5×3=66D.0.5×36+4×35=1336.6

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

15.若2弧度的圓心角所夾的扇形的面積是4cm2,則該圓心角所對(duì)的弧長(zhǎng)為( 。
A.2πcmB.2cmC.4πcmD.4cm

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

14.從甲、乙、丙、丁四人任選兩人參加問(wèn)卷調(diào)查,則甲被選中的概率是(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

13.下列選項(xiàng)中小于tan$\frac{π}{6}$的是( 。
A.sin$\frac{π}{4}$B.cos$\frac{π}{3}$C.sin$\frac{π}{2}$D.cos$\frac{π}{6}$

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

12.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,公差d≠0,且S3+S5=50,a1,a4,a13成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}滿足$\frac{_{1}}{3}$+$\frac{_{2}}{{3}^{2}}$+…+$\frac{_{n}}{{3}^{n}}$=an-1(n∈N*),求數(shù)列{nbn}的前n項(xiàng)和Tn

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

11.某商場(chǎng)舉行抽獎(jiǎng)活動(dòng),規(guī)則如下:甲箱子里裝有3個(gè)白球和2個(gè)黑球,乙箱子里裝有1個(gè)白球和3個(gè)黑球,這些球除顏色外完全相同;每次抽獎(jiǎng)都從這兩個(gè)箱子里各隨機(jī)地摸出2個(gè)球,若摸出的白球個(gè)數(shù)不少于2個(gè),則獲獎(jiǎng).(每次游戲結(jié)束后將球放回原箱)
(Ⅰ)在一次游戲中,求獲獎(jiǎng)的概率;
(Ⅱ)在三次游戲中,記獲獎(jiǎng)次數(shù)為隨機(jī)變量X,求X的分布列及期望.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

10.已知($\root{3}{x}$-$\frac{2}{x}$)n的展開(kāi)式中,第三項(xiàng)的系數(shù)為144.
(Ⅰ)求該展開(kāi)式中所有偶數(shù)項(xiàng)的二項(xiàng)式系數(shù)之和;
(Ⅱ)求該展開(kāi)式的所有有理項(xiàng).

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

9.在《爸爸去哪兒》第二季第四期中,村長(zhǎng)給8位“萌娃”布置一項(xiàng)搜尋空投食物的任務(wù).已知:
①食物投擲地點(diǎn)有遠(yuǎn)、近兩處; 
②由于“萌娃”Grace年紀(jì)尚小,所以要么不參與該項(xiàng)任務(wù),但此時(shí)另需一位“萌娃”在大本營(yíng)陪同,要么參與搜尋近處投擲點(diǎn)的食物;
③所有參與搜尋任務(wù)的“萌娃”須被均分成兩組,一組去遠(yuǎn)處,一組去近處.
則不同的搜尋方案有175種.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

8.已知(1+x+ax3)(x+$\frac{1}{x}$)5展開(kāi)式的各項(xiàng)系數(shù)和為96,則該展開(kāi)式的常數(shù)項(xiàng)是15.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

7.設(shè)復(fù)數(shù)z滿足z+|z|i=3+9i(i為虛數(shù)單位),則z=3+4i.

查看答案和解析>>

同步練習(xí)冊(cè)答案