相關習題
 0  230266  230274  230280  230284  230290  230292  230296  230302  230304  230310  230316  230320  230322  230326  230332  230334  230340  230344  230346  230350  230352  230356  230358  230360  230361  230362  230364  230365  230366  230368  230370  230374  230376  230380  230382  230386  230392  230394  230400  230404  230406  230410  230416  230422  230424  230430  230434  230436  230442  230446  230452  230460  266669 

科目: 來源: 題型:解答題

15.在如圖所示的空間幾何體中,平面ACD⊥平面ABC,△ACD與△ACB是邊長為2的等邊三角形,BE=2,BE和平面ABC所成的角為60°,且點E在平面ABC上的射影落在∠ABC的平分線上.
(1)求證:DE∥平面ABC;
(2)求二面角E-BC-A.

查看答案和解析>>

科目: 來源: 題型:解答題

14.如圖,在三棱柱ABC-A1B1C1中,已知BC=1,BB1=2,AB=$\sqrt{2}$,∠BCC1=90°,AB⊥側面BB1C1C,E為CC1的中點
(1)求證:EA⊥EB1
(2)求二面角A-EB1-A1的大小.

查看答案和解析>>

科目: 來源: 題型:解答題

13.試通過建立空間直角坐標系,利用空間向量解決下列問題:
如圖,已知四邊形ABCD和BCEF均為直角梯形,AD∥BC,CE∥BF,且∠BCD=∠BCE=90°,平面ABCD⊥平面PCEF,BC=CD=CE=2AD=2BF=2
(Ⅰ)證明:AF∥平面BDE
(Ⅱ)求銳二面角A-DE-B的余弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

12.如圖所示的幾何體中,四邊形ABCD為梯形,AD∥BC,AB⊥平面BEC,EC⊥CB,已知BC=2AD=2AB=2.
(Ⅰ)證明:BD⊥平面DEC;
(Ⅱ)若二面角A-ED-B的大小為30°,求EC的長度.

查看答案和解析>>

科目: 來源: 題型:選擇題

11.已知a>0,若函數$f(x)=\left\{\begin{array}{l}4a•lnx-{x^2},x>0\\{x^3}-3{a^2}x-4,x≤0\end{array}\right.$且g(x)=f(x)+2a至少有三個零點,則a的取值范圍是( 。
A.($\frac{1}{2}$,1]B.(1,2]C.(1,+∞)D.[1,+∞)

查看答案和解析>>

科目: 來源: 題型:解答題

10.如圖△ABC的角平分線AD的延長線交它的外接圓于點E.
(Ⅰ)證明:△ABE∽△ADC;
(Ⅱ)若BC為△ABC外接圓的直徑且AD•AE=2,求△ABC的面積.

查看答案和解析>>

科目: 來源: 題型:解答題

9.在四棱錐P-ABCD中,底面ABCD是邊長為1的正方形,且PA⊥面ABCD.
(1)求證:PC⊥BD;
(2)過直線BD且垂直于直線PC的平面交PC于點E,且三棱錐E-BCD的體積取到最大值,
①求此時PA的長度;
②求此時二面角A-DE-B的余弦值的大。

查看答案和解析>>

科目: 來源: 題型:解答題

8.如圖,在菱形ABCD中,∠BAD=60°,平面BDEF⊥平面ABCD,四邊形BDEF是正方形,點M在線段EF上,$\overrightarrow{EM}$=λ$\overrightarrow{EF}$.
(Ⅰ)當λ=$\frac{1}{2}$,求證:BM∥平面ACE;
(Ⅱ)如二面角A-BM-C的平面角的余弦值為-$\frac{7}{13}$,求實數λ的值.

查看答案和解析>>

科目: 來源: 題型:解答題

7.如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點,且PA=AD.
(1)求證:PB∥平面AEC;
(2)求證:AE⊥平面PCD;
(3)設二面角D-AE-C為60°,且AP=1,求D到平面AEC的距離.

查看答案和解析>>

科目: 來源: 題型:解答題

6.如圖,四邊形ABCD中,AB⊥AD,AD∥BC,AD=8,BC=6,AB=2,E,F分別在BC,AD上,EF∥AB,現將四邊形ABEF沿EF折起,使得平面ABEF⊥平面EFDC.
(1)若BE=3,求幾何體BEC-AFD的體積;
(2)求三棱錐A-CDF的體積的最大值,并求此時二面角A-CD-E的正切值.

查看答案和解析>>

同步練習冊答案