相關(guān)習(xí)題
 0  230448  230456  230462  230466  230472  230474  230478  230484  230486  230492  230498  230502  230504  230508  230514  230516  230522  230526  230528  230532  230534  230538  230540  230542  230543  230544  230546  230547  230548  230550  230552  230556  230558  230562  230564  230568  230574  230576  230582  230586  230588  230592  230598  230604  230606  230612  230616  230618  230624  230628  230634  230642  266669 

科目: 來(lái)源: 題型:解答題

14.設(shè)函數(shù)f(x)=x2+aln(x+1)
(1)若a=-4,寫出函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在[2,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

13.已知函數(shù)f(x)是定義在(1,+∞)上的可導(dǎo)函數(shù),f′(x)為其導(dǎo)函數(shù),e為自然對(duì)數(shù)的底數(shù),且xxf′(x)>ef(x)恒成立,則當(dāng)m>n>0時(shí),有( 。
A.mf(xn)>nf(xmB.mf(xn)<nf(xm
C.mf(xn)=nf(xmD.mf(xn)與nf(xm)大小不確定

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

12.若不等式(x+m22+(x+am-3)2>$\frac{1}{2}$對(duì)任意的x∈R,m∈[1,3]恒成立,則實(shí)數(shù)a的取值范圍是a<2$\sqrt{2}$或a>5.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=x2-alnx,a∈R.
(Ⅰ)若函數(shù)f(x)的導(dǎo)函數(shù)f′(x)在區(qū)間(1,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性;
(Ⅲ)當(dāng)a>0時(shí),函數(shù)f(x)的最小值記為g(a),證明:g(a)≤1.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=x3-$\sqrt{a}$x2+|ax|-5(a≥0).
(1)當(dāng)a=4時(shí),求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)若函數(shù)f(x)有且只有一個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

9.已知函數(shù)f(x)=lnx+2x,若f(x2)<f(6-x),則實(shí)數(shù)x的取值范圍是(-3,0)∪(0,2).

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=$\frac{1}{2}$ax2+2alnx+(a-2)x,a∈R.
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)是否存在實(shí)數(shù)a,對(duì)任意的x1,x2∈(0,+∞),且x1≠x2,有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{2}-{x}_{1}}$<a恒成立?若存在,求出a的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)滿足f(x)=f′(1)ex-1-f(0)x+$\frac{1}{2}$x2.(e=2.71828…)
(1)求f(x)的解析式及單調(diào)區(qū)間;
(2)設(shè)a>0,若f(x)≥$\frac{1}{2}$x2+(a-1)x+b對(duì)任意x恒成立,求ab的最大值.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=1nx-a(x-1)2的單調(diào)遞增區(qū)間是(0,$\frac{1+\sqrt{5}}{2}$)
(1)求實(shí)數(shù)a的值;
(2)證明:當(dāng)x>1時(shí),f(x)<x-1.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

5.設(shè)a,b是兩個(gè)不相等的正數(shù),且alna+b=blnb+a,則( 。
A.(a-1)(b-1)>0B.0<a+b<2C.ab>1D.0<ab<1

查看答案和解析>>

同步練習(xí)冊(cè)答案